francislabounty
commited on
Commit
·
3d443e9
1
Parent(s):
bc07074
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,54 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
LoRA weights only and trained for research - nothing from the foundation model. Trained using Open-Assistant's dataset. Shout-out to Open-Assistant and LAION for giving us early research access to the dataset.
|
5 |
+
|
6 |
+
Sample usage
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import os
|
10 |
+
import transformers
|
11 |
+
from peft import PeftModel
|
12 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
13 |
+
|
14 |
+
model_path = "decapoda-research/llama-7b-hf"
|
15 |
+
peft_path = 'serpdotai/llama-oasst-lora-7B'
|
16 |
+
tokenizer_path = 'decapoda-research/llama-7b-hf'
|
17 |
+
|
18 |
+
model = LlamaForCausalLM.from_pretrained(model_path, load_in_8bit=True, device_map="auto") # or something like {"": 0}
|
19 |
+
model = PeftModel.from_pretrained(model, peft_path, torch_dtype=torch.float16, device_map="auto") # or something like {"": 0}
|
20 |
+
tokenizer = LlamaTokenizer.from_pretrained(tokenizer_path)
|
21 |
+
|
22 |
+
batch = tokenizer("\n\nUser: Are you sentient?\n\nAssistant:", return_tensors="pt")
|
23 |
+
|
24 |
+
with torch.no_grad():
|
25 |
+
out = model.generate(
|
26 |
+
input_ids=batch["input_ids"].cuda(),
|
27 |
+
attention_mask=batch["attention_mask"].cuda(),
|
28 |
+
max_length=100,
|
29 |
+
do_sample=True,
|
30 |
+
top_k=50,
|
31 |
+
top_p=1.0,
|
32 |
+
temperature=1.0
|
33 |
+
)
|
34 |
+
print(tokenizer.decode(out[0]))
|
35 |
+
|
36 |
+
The model will continue the conversation between the user and itself. If you want to use as a chatbot you can alter the generate method to include stop sequences for 'User:' and 'Assistant:' or strip off anything past the assistant's original response before returning.
|
37 |
+
|
38 |
+
Trained for 4 epochs with a sequence length of 2048 on 8 A6000s with an effective batch size of 120.
|
39 |
+
|
40 |
+
Training settings:
|
41 |
+
|
42 |
+
lr: 2.0e-04
|
43 |
+
lr_scheduler_type: linear
|
44 |
+
warmup_ratio: 0.06
|
45 |
+
weight_decay: 0.1
|
46 |
+
optimizer: adamw_torch
|
47 |
+
LoRA config:
|
48 |
+
|
49 |
+
target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']
|
50 |
+
r: 64
|
51 |
+
lora_alpha: 32
|
52 |
+
lora_dropout: 0.05
|
53 |
+
bias: "none"
|
54 |
+
task_type: "CAUSAL_LM"
|