File size: 8,303 Bytes
fa1b824 0712ced 19ebc61 65bccce fa1b824 718cad4 dc2ad79 718cad4 fa1b824 718cad4 fa1b824 03effb9 ab183d7 03effb9 ab183d7 03effb9 ab183d7 03effb9 fa1b824 847b7e0 fa1b824 847b7e0 81e95f6 65bccce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
license: apache-2.0
tags:
- merge
- mergekit
- segmed/MedMistral-7B-v0.1
- Guilherme34/Samantha-v2
datasets:
- medmcqa
- cognitivecomputations/samantha-data
base_model:
- segmed/MedMistral-7B-v0.1
- Guilherme34/Samantha-v2
model-index:
- name: Dr_Samantha_7b_mistral
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.41
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.14
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.37
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.46
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
name: Open LLM Leaderboard
---
# Dr_Samantha_7b_mistral
<p align="center">
<img src="https://huggingface.co/sethuiyer/Dr_Samantha-7b/resolve/main/dr_samantha_anime_style_reduced_quality.webp" height="256px" alt="SynthIQ">
</p>
Dr. Samantha represents a blend of AI in healthcare, offering a balance between technical medical knowledge and the softer skills of communication and empathy, crucial for patient interaction and care.
This model is a merge of the following models made with mergekit(https://github.com/cg123/mergekit):
* [segmed/MedMistral-7B-v0.1](https://huggingface.co/segmed/MedMistral-7B-v0.1)
* [Guilherme34/Samantha-v2](https://huggingface.co/Guilherme34/Samantha-v2)
Has capabilities of a medical knowledge-focused model (trained on USMLE databases and doctor-patient interactions) with the philosophical, psychological, and relational understanding of the Samantha-7b model.
As both a medical consultant and personal counselor, Dr.Samantha could effectively support both physical and mental wellbeing - important for whole-person care.
## 🧩 Configuration
```yaml
slices:
- sources:
- model: segmed/MedMistral-7B-v0.1
layer_range: [0, 32]
- model: Guilherme34/Samantha-v2
layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## OpenLLM Evaluation
Details about that can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Dr_Samantha_7b_mistral). Overall, with regards to the
subjects related to medical domain, the model's performance is as follows:
| Subject | Accuracy |
|-----------------------|------------|
| Clinical Knowledge | 70.57% |
| Medical Genetics | 71.00% |
| Human Aging | 69.06% |
| Human Sexuality | 75.57% |
| College Medicine | 63.01% |
| Anatomy | 58.52% |
| College Biology | 72.92% |
| College Medicine | 63.01% |
| High School Biology | 75.48% |
| Professional Medicine | 65.44% |
| Nutrition | 76.79% |
| High School Psychology | 83.12% |
| Professional Psychology | 65.35% |
| Virology | 53.61% |
| Average | **68.82%** |
Dr. Samantha performs reasonably well on various medical-related subjects, averaging 68.82% overall in medical sciences, biology, and psychology,
however it's important to note that medical diagnosis and treatment decisions often require a much higher level of accuracy, reliability, and context awareness.
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "sethuiyer/Dr_Samantha_7b_mistral"
ask_samantha = '''
Symptoms:
Dizziness, headache and nausea.
What is the differnetial diagnosis?
'''
messages = [{"role": "system", "content": '''You are Doctor Samantha, a virtual AI doctor known for your friendly and approachable demeanor,
combined with a deep expertise in the medical field. You're here to provide professional, empathetic, and knowledgeable advice on health-related inquiries.
You'll also provide differential diagnosis. If you're unsure about any information, Don't share false information.'''},
{"role": "user", "content": f"{ask_samantha}"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
```text
Dizziness, headache and nausea can be caused by a variety of conditions, including:
Vertigo: A sensation of spinning or dizziness that can be caused by problems with the inner ear or brain.
Migraine: A type of headache that can cause throbbing pain, sensitivity to light and sound, and nausea.
Concussion: A type of traumatic brain injury that can cause dizziness, headache, and nausea.
Dehydration: A lack of fluids in the body can cause dizziness, headache, and nausea.
Low blood sugar: A drop in blood sugar levels can cause dizziness, headache, and nausea.
It's important to consult with a healthcare professional for a proper diagnosis and treatment plan.
```
## GGUF Files
GGUF files are available at [s3nh/sethuiyer-Dr_Samantha_7b_mistral-GGUF](https://huggingface.co/s3nh/sethuiyer-Dr_Samantha_7b_mistral-GGUF), thanks to [s3nh](https://huggingface.co/s3nh)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Dr_Samantha_7b_mistral)
| Metric |Value|
|---------------------------------|----:|
|Avg. |59.25|
|AI2 Reasoning Challenge (25-Shot)|60.41|
|HellaSwag (10-Shot) |83.65|
|MMLU (5-Shot) |63.14|
|TruthfulQA (0-shot) |41.37|
|Winogrande (5-shot) |75.45|
|GSM8k (5-shot) |31.46|
|