File size: 1,880 Bytes
70f062a
 
 
 
 
 
 
 
 
59da89f
70f062a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59da89f
70f062a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- merge
- mergekit
base_model:
- seyf1elislam/KunaiBeagle-7b
- teknium/OpenHermes-2.5-Mistral-7B
---

# KunaiBeagle-Hermes-7b

This is a merge of pre-trained language models created using mergekit.

## Merge Details
### Merge Method

This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base.

### Models Merged
The following models were included in the merge:
* [seyf1elislam/KunaiBeagle-7b](https://huggingface.co/seyf1elislam/KunaiBeagle-7b)
* [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)

##  Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
  - model: mistralai/Mistral-7B-v0.1
    # No parameters necessary for base model
  - model: seyf1elislam/KunaiBeagle-7b
    parameters:
      weight: 0.75
      density: 0.6
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 0.25
      density: 0.53
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16
```
## Usage Example

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "seyf1elislam/KunaiBeagle-Hermes-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```