--- tags: - merge - mergekit base_model: - seyf1elislam/KunaiBeagle-7b - teknium/OpenHermes-2.5-Mistral-7B --- # KunaiBeagle-Hermes-7b This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base. ### Models Merged The following models were included in the merge: * [seyf1elislam/KunaiBeagle-7b](https://huggingface.co/seyf1elislam/KunaiBeagle-7b) * [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) ## Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: seyf1elislam/KunaiBeagle-7b parameters: weight: 0.75 density: 0.6 - model: teknium/OpenHermes-2.5-Mistral-7B parameters: weight: 0.25 density: 0.53 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ``` ## Usage Example ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "seyf1elislam/KunaiBeagle-Hermes-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```