--- tags: - merge - mergekit base_model: - SanjiWatsuki/Kunoichi-DPO-v2-7B - senseable/WestLake-7B-v2 --- # Kuno-lake-slerp-7b This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Models Merged The following models were included in the merge: * [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) * [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2) ## Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: SanjiWatsuki/Kunoichi-DPO-v2-7B layer_range: [0, 32] - model: senseable/WestLake-7B-v2 layer_range: [0, 32] merge_method: slerp base_model: SanjiWatsuki/Kunoichi-DPO-v2-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## Usage Example ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "seyf1elislam/Kuno-lake-slerp-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```