--- language: - en license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: push-to-hub-test-2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8676470588235294 - name: F1 type: f1 value: 0.9078498293515359 --- # push-to-hub-test-2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6255 - Accuracy: 0.8676 - F1: 0.9078 - Combined Score: 0.8877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.14.4.dev0 - Tokenizers 0.13.3