shahukareem commited on
Commit
053169a
·
1 Parent(s): 1eb35a0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -15
README.md CHANGED
@@ -22,7 +22,6 @@ model-index:
22
  metrics:
23
  - name: Test WER
24
  type: wer
25
- value: 3.67
26
  ---
27
  # Wav2Vec2-Large-XLSR-53-Dhivehi
28
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice).
@@ -40,13 +39,13 @@ model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhive
40
  # Preprocessing the datasets.
41
  # We need to read the aduio files as arrays
42
  def speech_file_to_array_fn(batch):
43
- speech_array, sampling_rate = torchaudio.load(batch["path"])
44
- batch["speech"] = resampler(speech_array).squeeze().numpy()
45
- return batch
46
  test_dataset = test_dataset.map(speech_file_to_array_fn)
47
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
48
  with torch.no_grad():
49
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
50
  predicted_ids = torch.argmax(logits, dim=-1)
51
  print("Prediction:", processor.batch_decode(predicted_ids))
52
  print("Reference:", test_dataset["sentence"][:2])
@@ -69,20 +68,20 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
69
  # Preprocessing the datasets.
70
  # We need to read the aduio files as arrays
71
  def speech_file_to_array_fn(batch):
72
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
73
- speech_array, sampling_rate = torchaudio.load(batch["path"])
74
- batch["speech"] = resampler(speech_array).squeeze().numpy()
75
- return batch
76
  test_dataset = test_dataset.map(speech_file_to_array_fn)
77
  # Preprocessing the datasets.
78
  # We need to read the aduio files as arrays
79
  def evaluate(batch):
80
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
81
- with torch.no_grad():
82
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
83
- pred_ids = torch.argmax(logits, dim=-1)
84
- batch["pred_strings"] = processor.batch_decode(pred_ids)
85
- return batch
86
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
87
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
88
  ```
 
22
  metrics:
23
  - name: Test WER
24
  type: wer
 
25
  ---
26
  # Wav2Vec2-Large-XLSR-53-Dhivehi
27
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice).
 
39
  # Preprocessing the datasets.
40
  # We need to read the aduio files as arrays
41
  def speech_file_to_array_fn(batch):
42
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
43
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
44
+ \treturn batch
45
  test_dataset = test_dataset.map(speech_file_to_array_fn)
46
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
47
  with torch.no_grad():
48
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
49
  predicted_ids = torch.argmax(logits, dim=-1)
50
  print("Prediction:", processor.batch_decode(predicted_ids))
51
  print("Reference:", test_dataset["sentence"][:2])
 
68
  # Preprocessing the datasets.
69
  # We need to read the aduio files as arrays
70
  def speech_file_to_array_fn(batch):
71
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
72
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
73
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
74
+ \treturn batch
75
  test_dataset = test_dataset.map(speech_file_to_array_fn)
76
  # Preprocessing the datasets.
77
  # We need to read the aduio files as arrays
78
  def evaluate(batch):
79
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
80
+ \twith torch.no_grad():
81
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
82
+ \tpred_ids = torch.argmax(logits, dim=-1)
83
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
84
+ \treturn batch
85
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
86
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
87
  ```