shaktibiplab commited on
Commit
ac9930b
·
verified ·
1 Parent(s): 3af4e35

Upload model_card.md

Browse files
Files changed (1) hide show
  1. model_card.md +47 -0
model_card.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Animal Recognition Model
3
+
4
+ ## Model Overview
5
+ This model is designed to classify images of animals into predefined categories. It uses a ResNet50V2 base model and has been trained on a custom dataset.
6
+
7
+ ## Classes
8
+ The model was trained on the following classes:
9
+ - cat
10
+ - dog
11
+ - horse
12
+ - lion
13
+ - tiger
14
+ - elephant
15
+
16
+ ## Usage
17
+ 1. Load the model using TensorFlow/Keras.
18
+ 2. Preprocess the input image to a size of 256x256 and normalize it.
19
+ 3. Pass the preprocessed image to the model for prediction.
20
+
21
+ ```python
22
+ from keras.models import load_model
23
+ import numpy as np
24
+ from tensorflow.keras.utils import load_img, img_to_array
25
+
26
+ def predict_image(image_path, model):
27
+ img = load_img(image_path, target_size=(256, 256))
28
+ img_array = img_to_array(img) / 255.0
29
+ img_array = np.expand_dims(img_array, axis=0)
30
+ prediction = model.predict(img_array)
31
+ return np.argmax(prediction, axis=1)
32
+
33
+ model = load_model('best_model.weights.h5')
34
+ predicted_class = predict_image('/path/to/image.jpg', model)
35
+ print(f"Predicted class: {predicted_class}")
36
+ ```
37
+
38
+ ## Training Details
39
+ - **Base Model:** ResNet50V2 (pretrained on ImageNet)
40
+ - **Dataset:** Custom animal dataset
41
+ - **Optimizer:** Adam
42
+ - **Loss Function:** Sparse Categorical Crossentropy
43
+ - **Metrics:** Accuracy
44
+ - **Augmentation:** Applied during training
45
+
46
+ ## Model Performance
47
+ Training metrics and evaluation logs are available in the accompanying notebook.