Upload model_card.md
Browse files- model_card.md +47 -0
model_card.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Animal Recognition Model
|
3 |
+
|
4 |
+
## Model Overview
|
5 |
+
This model is designed to classify images of animals into predefined categories. It uses a ResNet50V2 base model and has been trained on a custom dataset.
|
6 |
+
|
7 |
+
## Classes
|
8 |
+
The model was trained on the following classes:
|
9 |
+
- cat
|
10 |
+
- dog
|
11 |
+
- horse
|
12 |
+
- lion
|
13 |
+
- tiger
|
14 |
+
- elephant
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
1. Load the model using TensorFlow/Keras.
|
18 |
+
2. Preprocess the input image to a size of 256x256 and normalize it.
|
19 |
+
3. Pass the preprocessed image to the model for prediction.
|
20 |
+
|
21 |
+
```python
|
22 |
+
from keras.models import load_model
|
23 |
+
import numpy as np
|
24 |
+
from tensorflow.keras.utils import load_img, img_to_array
|
25 |
+
|
26 |
+
def predict_image(image_path, model):
|
27 |
+
img = load_img(image_path, target_size=(256, 256))
|
28 |
+
img_array = img_to_array(img) / 255.0
|
29 |
+
img_array = np.expand_dims(img_array, axis=0)
|
30 |
+
prediction = model.predict(img_array)
|
31 |
+
return np.argmax(prediction, axis=1)
|
32 |
+
|
33 |
+
model = load_model('best_model.weights.h5')
|
34 |
+
predicted_class = predict_image('/path/to/image.jpg', model)
|
35 |
+
print(f"Predicted class: {predicted_class}")
|
36 |
+
```
|
37 |
+
|
38 |
+
## Training Details
|
39 |
+
- **Base Model:** ResNet50V2 (pretrained on ImageNet)
|
40 |
+
- **Dataset:** Custom animal dataset
|
41 |
+
- **Optimizer:** Adam
|
42 |
+
- **Loss Function:** Sparse Categorical Crossentropy
|
43 |
+
- **Metrics:** Accuracy
|
44 |
+
- **Augmentation:** Applied during training
|
45 |
+
|
46 |
+
## Model Performance
|
47 |
+
Training metrics and evaluation logs are available in the accompanying notebook.
|