File size: 2,717 Bytes
aa13424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_ind_loss_2e-05
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# furina_ind_loss_2e-05

This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0202
- Spearman Corr: 0.7740

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log        | 0.85  | 200  | 0.0209          | 0.7711        |
| No log        | 1.69  | 400  | 0.0213          | 0.7712        |
| 0.0009        | 2.54  | 600  | 0.0219          | 0.7735        |
| 0.0009        | 3.38  | 800  | 0.0209          | 0.7734        |
| 0.0006        | 4.23  | 1000 | 0.0207          | 0.7711        |
| 0.0006        | 5.07  | 1200 | 0.0209          | 0.7714        |
| 0.0006        | 5.92  | 1400 | 0.0215          | 0.7696        |
| 0.0005        | 6.77  | 1600 | 0.0215          | 0.7714        |
| 0.0005        | 7.61  | 1800 | 0.0209          | 0.7724        |
| 0.0005        | 8.46  | 2000 | 0.0204          | 0.7735        |
| 0.0005        | 9.3   | 2200 | 0.0207          | 0.7746        |
| 0.0007        | 10.15 | 2400 | 0.0202          | 0.7756        |
| 0.0007        | 10.99 | 2600 | 0.0209          | 0.7742        |
| 0.0007        | 11.84 | 2800 | 0.0205          | 0.7750        |
| 0.0007        | 12.68 | 3000 | 0.0203          | 0.7743        |
| 0.0007        | 13.53 | 3200 | 0.0207          | 0.7730        |
| 0.0007        | 14.38 | 3400 | 0.0209          | 0.7736        |
| 0.0007        | 15.22 | 3600 | 0.0205          | 0.7751        |
| 0.0006        | 16.07 | 3800 | 0.0206          | 0.7735        |
| 0.0006        | 16.91 | 4000 | 0.0202          | 0.7740        |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2