File size: 2,006 Bytes
b3d87ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-b8-10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-b8-10

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7340
- Rouge1: 0.0359
- Rouge2: 0.0077
- Rougel: 0.0357
- Rougelsum: 0.0357
- Gen Len: 10.8384

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 12.4116       | 1.0   | 1357 | 3.3739          | 0.0033 | 0.0002 | 0.0033 | 0.0033    | 16.3309 |
| 1.7237        | 2.0   | 2714 | 1.4076          | 0.0022 | 0.0    | 0.0021 | 0.0022    | 4.5805  |
| 1.4447        | 3.0   | 4071 | 1.2431          | 0.0031 | 0.0    | 0.0031 | 0.0031    | 4.0912  |
| 1.3493        | 4.0   | 5428 | 1.2140          | 0.0247 | 0.0026 | 0.0248 | 0.0247    | 7.3331  |
| 1.2809        | 5.0   | 6785 | 3.7340          | 0.0359 | 0.0077 | 0.0357 | 0.0357    | 10.8384 |


### Framework versions

- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3