File size: 2,135 Bytes
6f3f63d cee5d51 6f3f63d cee5d51 6f3f63d cee5d51 6f3f63d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- image-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-skin-demo-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-skin-demo-v2
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the skin-cancer dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5206
- Accuracy: 0.8027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.749 | 0.31 | 100 | 0.8017 | 0.7322 |
| 0.7376 | 0.62 | 200 | 0.7833 | 0.7210 |
| 0.6393 | 0.93 | 300 | 0.7435 | 0.7453 |
| 0.6058 | 1.25 | 400 | 0.8366 | 0.7391 |
| 0.5794 | 1.56 | 500 | 0.7278 | 0.7597 |
| 0.6625 | 1.87 | 600 | 0.6116 | 0.7846 |
| 0.5256 | 2.18 | 700 | 0.6108 | 0.7759 |
| 0.6053 | 2.49 | 800 | 0.5631 | 0.7965 |
| 0.601 | 2.8 | 900 | 0.5206 | 0.8027 |
| 0.4709 | 3.12 | 1000 | 0.5477 | 0.8177 |
| 0.5498 | 3.43 | 1100 | 0.5426 | 0.8121 |
| 0.4196 | 3.74 | 1200 | 0.5652 | 0.8065 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
|