--- license: apache-2.0 tags: - generated_from_trainer datasets: - peoples_daily_ner metrics: - precision - recall - f1 - accuracy model-index: - name: ner_peoples_daily results: - task: name: Token Classification type: token-classification dataset: name: peoples_daily_ner type: peoples_daily_ner config: peoples_daily_ner split: train args: peoples_daily_ner metrics: - name: Precision type: precision value: 0.9205354599829109 - name: Recall type: recall value: 0.9365401332946972 - name: F1 type: f1 value: 0.9284688307957485 - name: Accuracy type: accuracy value: 0.9929549534505072 --- # ner_peoples_daily This model is a fine-tuned version of [hfl/rbt6](https://huggingface.co/hfl/rbt6) on the peoples_daily_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0249 - Precision: 0.9205 - Recall: 0.9365 - F1: 0.9285 - Accuracy: 0.9930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3154 | 1.0 | 164 | 0.0410 | 0.8258 | 0.8684 | 0.8466 | 0.9868 | | 0.0394 | 2.0 | 328 | 0.0287 | 0.8842 | 0.9070 | 0.8954 | 0.9905 | | 0.0293 | 3.0 | 492 | 0.0264 | 0.8978 | 0.9168 | 0.9072 | 0.9916 | | 0.02 | 4.0 | 656 | 0.0254 | 0.9149 | 0.9226 | 0.9188 | 0.9923 | | 0.016 | 5.0 | 820 | 0.0250 | 0.9167 | 0.9281 | 0.9224 | 0.9927 | | 0.0124 | 6.0 | 984 | 0.0252 | 0.9114 | 0.9328 | 0.9220 | 0.9928 | | 0.0108 | 7.0 | 1148 | 0.0249 | 0.9169 | 0.9339 | 0.9254 | 0.9928 | | 0.0097 | 8.0 | 1312 | 0.0249 | 0.9205 | 0.9365 | 0.9285 | 0.9930 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1