--- license: mit base_model: sheepy928/default tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: FT_3 results: [] --- # FT_3 This model is a fine-tuned version of [sheepy928/default](https://huggingface.co/sheepy928/default) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7570 - Accuracy: 0.7393 - F1: 0.6292 - Recall: 0.7393 - Precision: 0.7147 - Combined Score: 0.7056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:--------------:| | 0.6785 | 1.6 | 300 | 0.7930 | 0.7387 | 0.6276 | 0.7387 | 0.5456 | 0.6627 | | 0.5583 | 3.19 | 600 | 0.6910 | 0.7613 | 0.7316 | 0.7613 | 0.7072 | 0.7404 | | 0.7857 | 4.79 | 900 | 0.6515 | 0.7387 | 0.6276 | 0.7387 | 0.5456 | 0.6627 | | 0.6309 | 6.38 | 1200 | 0.5592 | 0.848 | 0.8270 | 0.848 | 0.8382 | 0.8403 | | 0.2216 | 7.98 | 1500 | 0.5708 | 0.8773 | 0.8432 | 0.8773 | 0.8496 | 0.8619 | | 0.3214 | 9.57 | 1800 | 0.4550 | 0.896 | 0.8584 | 0.896 | 0.8776 | 0.8820 | | 0.7521 | 11.17 | 2100 | 0.3819 | 0.884 | 0.8423 | 0.884 | 0.8059 | 0.8541 | | 0.5048 | 12.77 | 2400 | 0.6582 | 0.7387 | 0.6276 | 0.7387 | 0.5456 | 0.6627 | | 0.6435 | 14.36 | 2700 | 0.5365 | 0.8467 | 0.8092 | 0.8467 | 0.7798 | 0.8206 | | 0.9304 | 15.96 | 3000 | 0.7577 | 0.7387 | 0.6289 | 0.7387 | 0.6302 | 0.6841 | | 0.7902 | 17.55 | 3300 | 0.7684 | 0.7387 | 0.6289 | 0.7387 | 0.6302 | 0.6841 | | 0.6364 | 19.15 | 3600 | 0.7638 | 0.7387 | 0.6289 | 0.7387 | 0.6302 | 0.6841 | | 0.6738 | 20.74 | 3900 | 0.7769 | 0.7393 | 0.6292 | 0.7393 | 0.7147 | 0.7056 | | 0.8142 | 22.34 | 4200 | 0.7443 | 0.7393 | 0.6292 | 0.7393 | 0.7147 | 0.7056 | | 0.8184 | 23.94 | 4500 | 0.7635 | 0.7393 | 0.6292 | 0.7393 | 0.7147 | 0.7056 | | 0.7562 | 25.53 | 4800 | 0.7467 | 0.7393 | 0.6292 | 0.7393 | 0.7147 | 0.7056 | | 0.5699 | 27.13 | 5100 | 0.7867 | 0.7393 | 0.6292 | 0.7393 | 0.7147 | 0.7056 | | 0.761 | 28.72 | 5400 | 0.7570 | 0.7393 | 0.6292 | 0.7393 | 0.7147 | 0.7056 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0 - Datasets 2.14.5 - Tokenizers 0.14.1