shenzhi-wang commited on
Commit
3409be9
1 Parent(s): a7031f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -3
README.md CHANGED
@@ -1,3 +1,101 @@
1
- ---
2
- license: gemma
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ base_model: google/gemma-2-27b-it
6
+ language:
7
+ - en
8
+ - zh
9
+ tags:
10
+ - llama-factory
11
+ - orpo
12
+ ---
13
+
14
+ ❗️❗️❗️NOTICE: For optimal performance, we refrain from fine-tuning the model's identity. Thus, inquiries such as "Who are you" or "Who developed you" may yield random responses that are not necessarily accurate.
15
+
16
+
17
+ # Updates
18
+
19
+ - 🚀🚀🚀 [Jul 2, 2024] We now introduce Gemma-2-27B-Chinese-Chat, which is **the first instruction-tuned language model built upon [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) for Chinese & English users** with various abilities such as roleplaying & tool-using.
20
+
21
+
22
+ # Model Summary
23
+
24
+ Gemma-2-27B-Chinese-Chat is **the first instruction-tuned language model built upon [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) for Chinese & English users** with various abilities such as roleplaying & tool-using.
25
+
26
+ Developed by: [Shenzhi Wang](https://shenzhi-wang.netlify.app) (王慎执) and [Yaowei Zheng](https://github.com/hiyouga) (郑耀威)
27
+
28
+ - License: [Gemma License](https://ai.google.dev/gemma/terms)
29
+ - Base Model: [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it)
30
+ - Model Size: 27.2B
31
+ - Context length: 8K
32
+
33
+ # 1. Introduction
34
+
35
+ This is the first model specifically fine-tuned for Chinese & English users based on the [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) with a preference dataset with more than 100K preference pairs. The fine-tuning algorithm we employ is ORPO [1].
36
+
37
+ **Compared to the original [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it), our Gemma-2-27B-Chinese-Chat model significantly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses, with enhanced performance in roleplay, tool-using, and math.**
38
+
39
+ [1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024).
40
+
41
+ Training framework: [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory).
42
+
43
+ Training details:
44
+
45
+ - epochs: 3
46
+ - learning rate: 3e-6
47
+ - learning rate scheduler type: cosine
48
+ - Warmup ratio: 0.1
49
+ - cutoff len (i.e. context length): 8192
50
+ - orpo beta (i.e. $\lambda$ in the ORPO paper): 0.05
51
+ - global batch size: 128
52
+ - fine-tuning type: full parameters
53
+ - optimizer: paged_adamw_32bit
54
+
55
+ # 2. Usage
56
+
57
+ ## 2.1 Usage of Our BF16 Model
58
+
59
+ 1. Please upgrade the `transformers` package to ensure it supports Gemma-2 models. The current version we are using is `4.42.2`.
60
+
61
+ 2. Use the following Python script to download our BF16 model
62
+
63
+ ```python
64
+ from huggingface_hub import snapshot_download
65
+ snapshot_download(repo_id="shenzhi-wang/Gemma-2-27B-Chinese-Chat", ignore_patterns=["*.gguf"]) # Download our BF16 model without downloading GGUF models.
66
+ ```
67
+
68
+ 3. Inference with the BF16 model
69
+
70
+ ```python
71
+ import torch
72
+ import transformers
73
+ from transformers import AutoModelForCausalLM, AutoTokenizer
74
+
75
+ model_id = "/Your/Local/Path/to/Gemma-2-27B-Chinese-Chat"
76
+ dtype = torch.bfloat16
77
+
78
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
79
+ model = AutoModelForCausalLM.from_pretrained(
80
+ model_id,
81
+ device_map="cuda",
82
+ torch_dtype=dtype,
83
+ )
84
+
85
+ chat = [
86
+ {"role": "user", "content": "写一首关于机器学习的诗。"},
87
+ ]
88
+ input_ids = tokenizer.apply_chat_template(
89
+ chat, tokenize=True, add_generation_prompt=True, return_tensors="pt"
90
+ ).to(model.device)
91
+
92
+ outputs = model.generate(
93
+ input_ids,
94
+ max_new_tokens=8192,
95
+ do_sample=True,
96
+ temperature=0.6,
97
+ top_p=0.9,
98
+ )
99
+ response = outputs[0][input_ids.shape[-1] :]
100
+ print(tokenizer.decode(response, skip_special_tokens=True))
101
+ ```