--- license: gemma library_name: transformers pipeline_tag: text-generation base_model: google/gemma-2-27b-it language: - en - zh tags: - llama-factory - orpo --- ❗️❗️❗️NOTICE: For optimal performance, we refrain from fine-tuning the model's identity. Thus, inquiries such as "Who are you" or "Who developed you" may yield random responses that are not necessarily accurate. # Updates - 🚀🚀🚀 [Jul 2, 2024] We now introduce Gemma-2-27B-Chinese-Chat, which is **the first instruction-tuned language model built upon [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) for Chinese & English users** with various abilities such as roleplaying & tool-using. # Model Summary Gemma-2-27B-Chinese-Chat is **the first instruction-tuned language model built upon [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) for Chinese & English users** with various abilities such as roleplaying & tool-using. Developed by: [Shenzhi Wang](https://shenzhi-wang.netlify.app) (王慎执) and [Yaowei Zheng](https://github.com/hiyouga) (郑耀威) - License: [Gemma License](https://ai.google.dev/gemma/terms) - Base Model: [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) - Model Size: 27.2B - Context length: 8K # 1. Introduction This is the first model specifically fine-tuned for Chinese & English users based on the [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) with a preference dataset with more than 100K preference pairs. The fine-tuning algorithm we employ is ORPO [1]. **Compared to the original [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it), our Gemma-2-27B-Chinese-Chat model significantly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses, with enhanced performance in roleplay, tool-using, and math.** [1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024). Training framework: [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory). Training details: - epochs: 3 - learning rate: 3e-6 - learning rate scheduler type: cosine - Warmup ratio: 0.1 - cutoff len (i.e. context length): 8192 - orpo beta (i.e. $\lambda$ in the ORPO paper): 0.05 - global batch size: 128 - fine-tuning type: full parameters - optimizer: paged_adamw_32bit # 2. Usage ## 2.1 Usage of Our BF16 Model 1. Please upgrade the `transformers` package to ensure it supports Gemma-2 models. The current version we are using is `4.42.2`. 2. Use the following Python script to download our BF16 model ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="shenzhi-wang/Gemma-2-27B-Chinese-Chat", ignore_patterns=["*.gguf"]) # Download our BF16 model without downloading GGUF models. ``` 3. Inference with the BF16 model ```python import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "/Your/Local/Path/to/Gemma-2-27B-Chinese-Chat" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ {"role": "user", "content": "写一首关于机器学习的诗。"}, ] input_ids = tokenizer.apply_chat_template( chat, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=8192, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1] :] print(tokenizer.decode(response, skip_special_tokens=True)) ```