File size: 2,372 Bytes
6dd9a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: llama3.1
---

# Model Summary

llama3.1-8B-Chinese-Chat is an instruction-tuned language model for Chinese & English users with various abilities such as roleplaying & tool-using built upon the Meta-Llama-3.1-8B-Instruct model.

Developers: [Shenzhi Wang](https://shenzhi-wang.netlify.app)\*, [Yaowei Zheng](https://github.com/hiyouga)\*, Guoyin Wang (in.ai), Shiji Song, Gao Huang. (\*: Equal Contribution)

- License: [Llama-3.1 License](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- Base Model: Meta-Llama-3.1-8B-Instruct
- Model Size: 8.03B
- Context length: 8K

# 1. Introduction

This is the first model specifically fine-tuned for Chinese & English user through ORPO [1] based on the [Meta-Llama-3.1-8B-Instruct model](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).

**Compared to the original [Meta-Llama-3.1-8B-Instruct model](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), our llama3.1-8B-Chinese-Chat model significantly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses.**


[1] Hong, Jiwoo, Noah Lee, and James Thorne. "Reference-free Monolithic Preference Optimization with Odds Ratio." arXiv preprint arXiv:2403.07691 (2024).

Training framework: [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory).

Training details:

- epochs: 3
- learning rate: 3e-6
- learning rate scheduler type: cosine
- Warmup ratio: 0.1
- cutoff len (i.e. context length): 8192
- orpo beta (i.e. $\lambda$ in the ORPO paper): 0.05
- global batch size: 128
- fine-tuning type: full parameters
- optimizer: paged_adamw_32bit



# 2. Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "shenzhi-wang/Llama3.1-8B-Chinese-Chat"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id, torch_dtype="auto", device_map="auto"
)

messages = [
    {"role": "user", "content": "写一首诗吧"},
]

input_ids = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)

outputs = model.generate(
    input_ids,
    max_new_tokens=8192,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```