flemingxu commited on
Commit
9371505
·
1 Parent(s): 1319a31
LICENSE ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LLaMA LICENSE AGREEMENT
2
+ This License Agreement (as may be amended in accordance with this License Agreement, “License”), between you, or your employer or other entity (if you are entering into this agreement on behalf of your employer or other entity) (“Licensee” or “you”) and Meta Platforms, Inc. (“Meta” or “we”) applies to your use of any computer program, algorithm, source code, object code, or software that is made available by Meta under this License (“Software”) and any specifications, manuals, documentation, and other written information provided by Meta related to the Software (“Documentation”).
3
+
4
+ By clicking “I Accept” below or by using the Software, you agree to the terms of this License. If you do not agree to this License, then you do not have any rights to use the Software or Documentation (collectively, the “Software Products”), and you must immediately cease using the Software Products. If you are agreeing to be bound by the terms of this License on behalf of your employer or other entity, you represent and warrant to Meta that you have full legal authority to bind your employer or such entity to this License. If you do not have the requisite authority, you may not accept the License or access the Software Products on behalf of your employer or other entity.
5
+
6
+
7
+
8
+ LICENSE GRANT
9
+
10
+ a. Subject to your compliance with the Documentation and Sections 2, 3, and 5, Meta grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under Meta’s copyright interests to reproduce, distribute, and create derivative works of the Software solely for your non-commercial research purposes. The foregoing license is personal to you, and you may not assign or sublicense this License or any other rights or obligations under this License without Meta’s prior written consent; any such assignment or sublicense will be void and will automatically and immediately terminate this License.
11
+
12
+ b. You may make a reasonable number of copies of the Documentation solely for use in connection with the license to the Software granted above.
13
+
14
+ c. The grant of rights expressly set forth in this Section 1 (License Grant) are the complete grant of rights to you in the Software Products, and no other licenses are granted, whether by waiver, estoppel, implication, equity or otherwise. Meta and its licensors reserve all rights not expressly granted by this License.
15
+
16
+
17
+ RESTRICTIONS
18
+
19
+ You will not, and will not permit, assist or cause any third party to:
20
+
21
+ a. use, modify, copy, reproduce, create derivative works of, or distribute the Software Products (or any derivative works thereof, works incorporating the Software Products, or any data produced by the Software), in whole or in part, for (i) any commercial or production purposes, (ii) military purposes or in the service of nuclear technology, (iii) purposes of surveillance, including any research or development relating to surveillance, (iv) biometric processing, (v) in any manner that infringes, misappropriates, or otherwise violates any third-party rights, or (vi) in any manner that violates any applicable law, including accessing the Software Products from an embargoed country as prohibited by the U.S. government, and violating any privacy or security laws, rules, regulations, directives, or governmental requirements (including the General Data Privacy Regulation (Regulation (EU) 2016/679), the California Consumer Privacy Act, and any and all laws governing the processing of biometric information), as well as all amendments and successor laws to any of the foregoing;
22
+
23
+ b. alter or remove copyright and other proprietary notices which appear on or in the Software Products;
24
+
25
+ c. utilize any equipment, device, software, or other means to circumvent or remove any security or protection used by Meta in connection with the Software, or to circumvent or remove any usage restrictions, or to enable functionality disabled by Meta; or
26
+
27
+ d. offer or impose any terms on the Software Products that alter, restrict, or are inconsistent with the terms of this License.
28
+
29
+
30
+ ATTRIBUTION
31
+
32
+ Together with any copies of the Software Products (as well as derivative works thereof or works incorporating the Software Products) that you distribute, you must provide (i) a copy of this License, and (ii) the following attribution notice: “LLaMA is licensed under the LLaMA license, Copyright (c) Meta Platforms, Inc. All Rights Reserved.”
33
+
34
+
35
+ DISCLAIMERS
36
+
37
+ THE SOFTWARE PRODUCTS ARE PROVIDED “AS IS” and “WITH ALL FAULTS” WITH NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. META EXPRESSLY DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS OR IMPLIED, WHETHER BY STATUTE, CUSTOM, USAGE OR OTHERWISE AS TO ANY MATTERS RELATED TO THE SOFTWARE PRODUCTS, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, SATISFACTORY QUALITY, OR NON-INFRINGEMENT. META MAKES NO WARRANTIES OR REPRESENTATIONS THAT THE SOFTWARE PRODUCTS WILL BE ERROR FREE OR FREE OF VIRUSES OR OTHER HARMFUL COMPONENTS, OR PRODUCE ANY PARTICULAR RESULTS.
38
+
39
+
40
+ LIMITATION OF LIABILITY
41
+
42
+ TO THE FULLEST EXTENT PERMITTED BY LAW, IN NO EVENT WILL META BE LIABLE TO YOU (A) UNDER ANY THEORY OF LIABILITY, WHETHER BASED IN CONTRACT, TORT, NEGLIGENCE, STRICT LIABILITY, WARRANTY, OR OTHERWISE UNDER THIS LICENSE, OR (B) FOR ANY INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, PUNITIVE OR SPECIAL DAMAGES OR LOST PROFITS, EVEN IF META HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE SOFTWARE PRODUCTS, THEIR CONSTITUENT COMPONENTS, AND ANY OUTPUT (COLLECTIVELY, “SOFTWARE MATERIALS”) ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATION OR SITUATION WHERE FAILURE OR FAULT OF THE SOFTWARE MATERIALS COULD REASONABLY BE ANTICIPATED TO LEAD TO SERIOUS INJURY OF ANY PERSON, INCLUDING POTENTIAL DISCRIMINATION OR VIOLATION OF AN INDIVIDUAL’S PRIVACY RIGHTS, OR TO SEVERE PHYSICAL, PROPERTY, OR ENVIRONMENTAL DAMAGE (EACH, A “HIGH-RISK USE”). IF YOU ELECT TO USE ANY OF THE SOFTWARE MATERIALS FOR A HIGH-RISK USE, YOU DO SO AT YOUR OWN RISK. YOU AGREE TO DESIGN AND IMPLEMENT APPROPRIATE DECISION-MAKING AND RISK-MITIGATION PROCEDURES AND POLICIES IN CONNECTION WITH A HIGH-RISK USE SUCH THAT EVEN IF THERE IS A FAILURE OR FAULT IN ANY OF THE SOFTWARE MATERIALS, THE SAFETY OF PERSONS OR PROPERTY AFFECTED BY THE ACTIVITY STAYS AT A LEVEL THAT IS REASONABLE, APPROPRIATE, AND LAWFUL FOR THE FIELD OF THE HIGH-RISK USE.
43
+
44
+
45
+ INDEMNIFICATION
46
+
47
+ You will indemnify, defend and hold harmless Meta and our subsidiaries and affiliates, and each of our respective shareholders, directors, officers, employees, agents, successors, and assigns (collectively, the “Meta Parties”) from and against any losses, liabilities, damages, fines, penalties, and expenses (including reasonable attorneys’ fees) incurred by any Meta Party in connection with any claim, demand, allegation, lawsuit, proceeding, or investigation (collectively, “Claims”) arising out of or related to: (a) your access to or use of the Software Products (as well as any results or data generated from such access or use), including any High-Risk Use (defined below); (b) your violation of this License; or (c) your violation, misappropriation or infringement of any rights of another (including intellectual property or other proprietary rights and privacy rights). You will promptly notify the Meta Parties of any such Claims, and cooperate with Meta Parties in defending such Claims. You will also grant the Meta Parties sole control of the defense or settlement, at Meta’s sole option, of any Claims. This indemnity is in addition to, and not in lieu of, any other indemnities or remedies set forth in a written agreement between you and Meta or the other Meta Parties.
48
+
49
+
50
+ TERMINATION; SURVIVAL
51
+
52
+ a. This License will automatically terminate upon any breach by you of the terms of this License.
53
+
54
+ b. We may terminate this License, in whole or in part, at any time upon notice (including electronic) to you.
55
+
56
+ c. The following sections survive termination of this License: 2 (Restrictions), 3 (Attribution), 4 (Disclaimers), 5 (Limitation on Liability), 6 (Indemnification) 7 (Termination; Survival), 8 (Third Party Materials), 9 (Trademarks), 10 (Applicable Law; Dispute Resolution), and 11 (Miscellaneous).
57
+
58
+
59
+ THIRD PARTY MATERIALS
60
+
61
+ The Software Products may contain third-party software or other components (including free and open source software) (all of the foregoing, “Third Party Materials”), which are subject to the license terms of the respective third-party licensors. Your dealings or correspondence with third parties and your use of or interaction with any Third Party Materials are solely between you and the third party. Meta does not control or endorse, and makes no representations or warranties regarding, any Third Party Materials, and your access to and use of such Third Party Materials are at your own risk.
62
+
63
+
64
+ TRADEMARKS
65
+
66
+ Licensee has not been granted any trademark license as part of this License and may not use any name or mark associated with Meta without the prior written permission of Meta, except to the extent necessary to make the reference required by the “ATTRIBUTION” section of this Agreement.
67
+
68
+
69
+ APPLICABLE LAW; DISPUTE RESOLUTION
70
+
71
+ This License will be governed and construed under the laws of the State of California without regard to conflicts of law provisions. Any suit or proceeding arising out of or relating to this License will be brought in the federal or state courts, as applicable, in San Mateo County, California, and each party irrevocably submits to the jurisdiction and venue of such courts.
72
+
73
+
74
+ MISCELLANEOUS
75
+
76
+ If any provision or part of a provision of this License is unlawful, void or unenforceable, that provision or part of the provision is deemed severed from this License, and will not affect the validity and enforceability of any remaining provisions. The failure of Meta to exercise or enforce any right or provision of this License will not operate as a waiver of such right or provision. This License does not confer any third-party beneficiary rights upon any other person or entity. This License, together with the Documentation, contains the entire understanding between you and Meta regarding the subject matter of this License, and supersedes all other written or oral agreements and understandings between you and Meta regarding such subject matter. No change or addition to any provision of this License will be binding unless it is in writing and signed by an authorized representative of both you and Meta.
README.md CHANGED
@@ -1,3 +1,180 @@
1
  ---
2
- license: bigscience-openrail-m
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: chinese-llama-plus-13b-hf
3
+ emoji: 📚
4
+ colorFrom: gray
5
+ colorTo: red
6
+ language:
7
+ - zh
8
+ tags:
9
+ - chatglm
10
+ - pytorch
11
+ - zh
12
+ - Text2Text-Generation
13
+ - LLaMA
14
+ license: other
15
+ widget:
16
+ - text: 为什么天空是蓝色的?
17
  ---
18
+
19
+ # Chinese LLaMA Plus 13B Model
20
+
21
+ **发布中文LLaMA-Plus, Alpaca-Plus 13B版本模型**
22
+
23
+ 发布中文LLaMA-Plus, Alpaca-Plus 13B版本,改进点如下:
24
+
25
+ - 相比基础版进一步扩充了训练数据,其中LLaMA扩充至120G文本,Alpaca扩充至4.3M指令数据,重点增加了科学领域数据,涵盖:物理、化学、生物、医学、地球科学等
26
+ - Alpaca训练时采用了更大的rank,相比基础版具有更低的验证集损失
27
+ - Alpaca评测结果:13B获得74.3分,Plus-7B获得78.2分,Plus-13B获得80.8分,具体评测结果请参考[效果评测](https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/examples)
28
+ - 多轮回复长度相比旧模型提升明显(可适当增大温度系数)
29
+ - 知识问答、写作、翻译等方面效果显著提升
30
+
31
+ 本模型是 [decapoda-research/llama-13b-hf](https://huggingface.co/decapoda-research/llama-13b-hf)
32
+ 底座模型 合并 [ziqingyang/chinese-llama-plus-lora-13b](https://huggingface.co/ziqingyang/chinese-llama-plus-lora-13b) LoRA权重,
33
+ 并转化为HuggingFace版本权重(.bin文件),可以在此中文LLaMA模型上继续指令微调训练,LLaMA模型为底座模型,直接调用可能效果不佳。
34
+
35
+
36
+ test case:
37
+
38
+ |input_text|predict|
39
+ |:-- |:--- |
40
+ |为什么天空是蓝色的?|天空是蓝色的是因为大气中的气体分子散射了太阳光中的短波长蓝光,使得我们看到的天空呈现出蓝色。|
41
+
42
+ ## release model weight
43
+
44
+ - chinese-llama-plus-7b 模型权重链接:https://huggingface.co/minlik/chinese-llama-plus-7b-merged
45
+ - chinese-alpaca-plus-7b 模型权重链接:https://huggingface.co/shibing624/chinese-alpaca-plus-7b-hf
46
+ - chinese-llama-plus-13b 模型权重链接:https://huggingface.co/shibing624/chinese-llama-plus-13b-hf
47
+ - chinese-aplaca-plus-13b 模型权重链接:https://huggingface.co/shibing624/chinese-alpaca-plus-13b-hf
48
+
49
+ ## Usage
50
+
51
+ 本项目开源在textgen项目:[textgen](https://github.com/shibing624/textgen),可支持llama模型,通过如下命令调用:
52
+
53
+ Install package:
54
+ ```shell
55
+ pip install -U textgen
56
+ ```
57
+
58
+ ```python
59
+ from textgen import LlamaModel
60
+ model = LlamaModel("llama", "shibing624/chinese-llama-plus-13b-hf")
61
+ r = model.predict(["用一句话描述地球为什么是独一无二的。"])
62
+ print(r) # ['地球是独一无二的,因为它拥有独特的大气层、水循环、生物多样性以及其他自然资源,这些都使它成为一个独特的生命支持系统。']
63
+ ```
64
+
65
+ ## Usage (HuggingFace Transformers)
66
+ Without [textgen](https://github.com/shibing624/textgen), you can use the model like this:
67
+
68
+ First, you pass your input through the transformer model, then you get the generated sentence.
69
+
70
+ Install package:
71
+ ```
72
+ pip install sentencepiece
73
+ pip install transformers>=4.28.0
74
+ ```
75
+
76
+ ```python
77
+ import torch
78
+ import transformers
79
+ from transformers import LlamaTokenizer, LlamaForCausalLM
80
+
81
+ def generate_prompt(text):
82
+ return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
83
+
84
+ ### Instruction:
85
+ {text}
86
+
87
+ ### Response:"""
88
+
89
+
90
+ tokenizer = LlamaTokenizer.from_pretrained('shibing624/chinese-llama-plus-13b-hf')
91
+ model = LlamaForCausalLM.from_pretrained('shibing624/chinese-llama-plus-13b-hf').half().cuda()
92
+ model.eval()
93
+
94
+ text = '为什么天空是蓝色的?'
95
+ prompt = generate_prompt(text)
96
+ input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
97
+
98
+
99
+ with torch.no_grad():
100
+ output_ids = model.generate(
101
+ input_ids=input_ids,
102
+ max_new_tokens=128,
103
+ temperature=1,
104
+ top_k=40,
105
+ top_p=0.9,
106
+ repetition_penalty=1.15
107
+ ).cuda()
108
+ output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
109
+ print(output.replace(text, '').strip())
110
+ ```
111
+
112
+
113
+ output:
114
+ ```shell
115
+ 为什么天空是蓝色的?
116
+ 天空是蓝色的是因为大气中的气体分子散射了太阳光中的短波长蓝光,使得我们看到的天空呈现出蓝色。
117
+ ```
118
+
119
+ ## 模型来源
120
+ release合并后的模型权重,一步到位直接使用,省电、减少碳排放。
121
+
122
+
123
+ 基于 [多LoRA权重合并(适用于Chinese-Alpaca-Plus )](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/%E6%89%8B%E5%8A%A8%E6%A8%A1%E5%9E%8B%E5%90%88%E5%B9%B6%E4%B8%8E%E8%BD%AC%E6%8D%A2#%E5%A4%9Alora%E6%9D%83%E9%87%8D%E5%90%88%E5%B9%B6%E9%80%82%E7%94%A8%E4%BA%8Echinese-alpaca-plus)方法手动合并而成,具体是使用 [decapoda-research/llama-13b-hf](https://huggingface.co/decapoda-research/llama-13b-hf)
124
+ 底座模型 合并 [ziqingyang/chinese-llama-plus-lora-13b](https://huggingface.co/ziqingyang/chinese-llama-plus-lora-13b) 和 [ziqingyang/chinese-alpaca-plus-lora-13b](https://huggingface.co/ziqingyang/chinese-alpaca-plus-lora-13b) 两个LoRA权重 得到,并转���为HuggingFace版本权重(.bin文件)。
125
+
126
+ HuggingFace版本权重(.bin文件)可用于:
127
+ - 使用Transformers进行训练和推理
128
+ - 使用text-generation-webui搭建界面
129
+
130
+ PyTorch版本权重(.pth文件)可用于:
131
+ - 使用llama.cpp工具进行量化和部署
132
+
133
+ PyTorch版本权重(.pth文件)链接:[shibing624/chinese-alpaca-plus-13b-pth](https://huggingface.co/shibing624/chinese-alpaca-plus-13b-pth)
134
+
135
+ 模型文件组成:
136
+ ```
137
+ chinese-alpaca-plus-13b-hf
138
+ |-- config.json
139
+ |-- generation_config.json
140
+ |-- LICENSE
141
+ |-- pytorch_model-00001-of-00003.bin
142
+ |-- pytorch_model-00002-of-00003.bin
143
+ |-- pytorch_model-00003-of-00003.bin
144
+ |-- pytorch_model.bin.index.json
145
+ |-- README.md
146
+ |-- special_tokens_map.json
147
+ |-- tokenizer_config.json
148
+ `-- tokenizer.model
149
+ ```
150
+
151
+ 硬件要求:25G显存
152
+
153
+ ### 微调数据集
154
+ 我整理部分公开微调数据集:
155
+
156
+ 1. 50万条中文ChatGPT指令Belle数据集:[BelleGroup/train_0.5M_CN](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
157
+ 2. 100万条中文ChatGPT指令Belle数据集:[BelleGroup/train_1M_CN](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
158
+ 3. 5万条英文ChatGPT指令Alpaca数据集:[50k English Stanford Alpaca dataset](https://github.com/tatsu-lab/stanford_alpaca#data-release)
159
+ 4. 5万条中文GPT4指令Alpaca数据集:[shibing624/alpaca-zh](https://huggingface.co/datasets/shibing624/alpaca-zh)
160
+ 5. 69万条中文指令Guanaco数据集(Belle50万条+Guanaco19万条):[Chinese-Vicuna/guanaco_belle_merge_v1.0](https://huggingface.co/datasets/Chinese-Vicuna/guanaco_belle_merge_v1.0)
161
+
162
+
163
+ 如果需要训练LLaMA模型,请参考[https://github.com/shibing624/textgen](https://github.com/shibing624/textgen)
164
+
165
+
166
+ ## Citation
167
+
168
+ ```latex
169
+ @software{textgen,
170
+ author = {Xu Ming},
171
+ title = {textgen: Implementation of language model finetune},
172
+ year = {2023},
173
+ url = {https://github.com/shibing624/textgen},
174
+ }
175
+ ```
176
+
177
+
178
+ ## Reference
179
+ - https://github.com/ymcui/Chinese-LLaMA-Alpaca
180
+
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "bos_token_id": 0,
6
+ "eos_token_id": 1,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 5120,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 13824,
11
+ "max_position_embeddings": 2048,
12
+ "max_sequence_length": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 40,
15
+ "num_hidden_layers": 40,
16
+ "pad_token_id": -1,
17
+ "rms_norm_eps": 1e-06,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float16",
20
+ "transformers_version": "4.28.1",
21
+ "use_cache": true,
22
+ "vocab_size": 49953
23
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.28.1"
7
+ }
pytorch_model-00001-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5808391fc74b05dd5f6bf7610b54d554a409082c31d70c6ae35c7c27793d7d2
3
+ size 9886131639
pytorch_model-00002-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0acd87ce8c1d762f62892fd6761f7821c84ebb7ada8380f0cf4bef229c89b3e
3
+ size 9867488537
pytorch_model-00003-of-00003.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9db3f8e0d25550638f983d3918fa312eea8f03448ec19d974ad6407550799a0d
3
+ size 6645939945
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26399416320
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00003-of-00003.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
358
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
359
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
360
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
361
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
362
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
363
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
364
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
365
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
366
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
367
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
368
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
369
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
370
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
371
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
372
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
373
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
374
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
375
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
376
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
377
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
378
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
379
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
380
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
381
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
382
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
383
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
384
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
385
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
386
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
387
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
388
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
389
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
390
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
391
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
392
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
393
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
394
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
395
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
396
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
397
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
398
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
399
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
400
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
401
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
402
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
403
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
404
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
405
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
406
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
407
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
408
+ "model.norm.weight": "pytorch_model-00003-of-00003.bin"
409
+ }
410
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "unk_token": "<unk>"
5
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2676d4ca29ca1750f6ff203328d73b189321dc5776ceede037cbd36541d70c0
3
+ size 757958
tokenizer_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 1000000000000000019884624838656,
22
+ "pad_token": null,
23
+ "sp_model_kwargs": {},
24
+ "tokenizer_class": "LlamaTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": true,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }