shihab17 commited on
Commit
0e17e87
·
1 Parent(s): e4bc2fb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md CHANGED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - bn
4
+ - en
5
+ pipeline_tag: translation
6
+ ---
7
+ # Bangla Sentence Transformer
8
+
9
+ Sentence Transformer is a cutting-edge natural language processing (NLP) model that is capable of encoding and transforming sentences into high-dimensional embeddings. With this technology, we can unlock powerful insights and applications in various fields like text classification, information retrieval, semantic search, and more.
10
+
11
+ This model is finetune from ```stsb-xlm-r-multilingual```
12
+ it's now available on Hugging Face! 🎉🎉
13
+
14
+ ## Install
15
+
16
+ ```
17
+ pip install -U sentence-transformers
18
+ ```
19
+
20
+ ```python
21
+ from sentence_transformers import SentenceTransformer
22
+ sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
23
+
24
+ model = SentenceTransformer('shihab17/bangla-sentence-transformer ')
25
+ embeddings = model.encode(sentences)
26
+ print(embeddings)
27
+ ```
28
+
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModel
31
+ import torch
32
+
33
+
34
+ #Mean Pooling - Take attention mask into account for correct averaging
35
+ def mean_pooling(model_output, attention_mask):
36
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
37
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
38
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
39
+
40
+
41
+ # Sentences we want sentence embeddings for
42
+ sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
43
+
44
+ # Load model from HuggingFace Hub
45
+ tokenizer = AutoTokenizer.from_pretrained('shihab17/bangla-sentence-transformer')
46
+ model = AutoModel.from_pretrained('shihab17/bangla-sentence-transformer')
47
+
48
+ # Tokenize sentences
49
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
50
+
51
+ # Compute token embeddings
52
+ with torch.no_grad():
53
+ model_output = model(**encoded_input)
54
+
55
+ # Perform pooling. In this case, mean pooling.
56
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
57
+
58
+ print("Sentence embeddings:")
59
+ print(sentence_embeddings)
60
+ ```
61
+
62
+ ## How to get sentence similarity
63
+
64
+ ```python
65
+ from sentence_transformers import SentenceTransformer
66
+ from sentence_transformers.util import pytorch_cos_sim
67
+
68
+
69
+ transformer = SentenceTransformer('shihab17/bangla-sentence-transformer')
70
+
71
+ sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
72
+
73
+ sentences_embeddings = transformer.encode(sentences)
74
+
75
+ for i in range(len(sentences)):
76
+ for j in range(i, len(sentences)):
77
+ sen_1 = sentences[i]
78
+ sen_2 = sentences[j]
79
+ sim_score = float(pytorch_cos_sim(sentences_embeddings[i], sentences_embeddings[j]))
80
+ print(sen_1, '----->', sen_2, sim_score)
81
+ ```
82
+
83
+ ## Best MSE: 7.57528096437454