Update README.md
Browse files
README.md
CHANGED
@@ -5,10 +5,13 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
-
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
# {
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -26,9 +29,9 @@ Then you can use the model like this:
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = [
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
@@ -51,11 +54,11 @@ def mean_pooling(model_output, attention_mask):
|
|
51 |
|
52 |
|
53 |
# Sentences we want sentence embeddings for
|
54 |
-
sentences = ['
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -70,12 +73,32 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
|
|
70 |
print("Sentence embeddings:")
|
71 |
print(sentence_embeddings)
|
72 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
## Evaluation Results
|
77 |
|
78 |
<!--- Describe how your model was evaluated -->
|
|
|
79 |
|
80 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
81 |
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- transformers
|
8 |
+
language:
|
9 |
+
- bn
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
---
|
13 |
|
14 |
+
# {shihab17/bangla-sentence-transformer }
|
15 |
|
16 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
17 |
|
|
|
29 |
|
30 |
```python
|
31 |
from sentence_transformers import SentenceTransformer
|
32 |
+
sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
|
33 |
|
34 |
+
model = SentenceTransformer('shihab17/bangla-sentence-transformer ')
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
|
|
54 |
|
55 |
|
56 |
# Sentences we want sentence embeddings for
|
57 |
+
sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
|
58 |
|
59 |
# Load model from HuggingFace Hub
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained('shihab17/bangla-sentence-transformer')
|
61 |
+
model = AutoModel.from_pretrained('shihab17/bangla-sentence-transformer')
|
62 |
|
63 |
# Tokenize sentences
|
64 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
73 |
print("Sentence embeddings:")
|
74 |
print(sentence_embeddings)
|
75 |
```
|
76 |
+
## How to get sentence similarity
|
77 |
+
|
78 |
+
```python
|
79 |
+
from sentence_transformers import SentenceTransformer
|
80 |
+
from sentence_transformers.util import pytorch_cos_sim
|
81 |
+
|
82 |
|
83 |
+
transformer = SentenceTransformer('shihab17/bangla-sentence-transformer')
|
84 |
+
|
85 |
+
sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
|
86 |
+
|
87 |
+
sentences_embeddings = transformer.encode(sentences)
|
88 |
+
|
89 |
+
for i in range(len(sentences)):
|
90 |
+
for j in range(i, len(sentences)):
|
91 |
+
sen_1 = sentences[i]
|
92 |
+
sen_2 = sentences[j]
|
93 |
+
sim_score = float(pytorch_cos_sim(sentences_embeddings[i], sentences_embeddings[j]))
|
94 |
+
print(sen_1, '----->', sen_2, sim_score)
|
95 |
+
```
|
96 |
|
97 |
|
98 |
## Evaluation Results
|
99 |
|
100 |
<!--- Describe how your model was evaluated -->
|
101 |
+
## Best MSE: 7.57528096437454
|
102 |
|
103 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
104 |
|