shihab17 commited on
Commit
acc363f
·
1 Parent(s): 1de15a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -7
README.md CHANGED
@@ -5,10 +5,13 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -26,9 +29,9 @@ Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
@@ -51,11 +54,11 @@ def mean_pooling(model_output, attention_mask):
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -70,12 +73,32 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
70
  print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
 
 
 
 
 
 
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
 
76
  ## Evaluation Results
77
 
78
  <!--- Describe how your model was evaluated -->
 
79
 
80
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
 
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ language:
9
+ - bn
10
+ metrics:
11
+ - accuracy
12
  ---
13
 
14
+ # {shihab17/bangla-sentence-transformer }
15
 
16
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
17
 
 
29
 
30
  ```python
31
  from sentence_transformers import SentenceTransformer
32
+ sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
33
 
34
+ model = SentenceTransformer('shihab17/bangla-sentence-transformer ')
35
  embeddings = model.encode(sentences)
36
  print(embeddings)
37
  ```
 
54
 
55
 
56
  # Sentences we want sentence embeddings for
57
+ sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
58
 
59
  # Load model from HuggingFace Hub
60
+ tokenizer = AutoTokenizer.from_pretrained('shihab17/bangla-sentence-transformer')
61
+ model = AutoModel.from_pretrained('shihab17/bangla-sentence-transformer')
62
 
63
  # Tokenize sentences
64
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
73
  print("Sentence embeddings:")
74
  print(sentence_embeddings)
75
  ```
76
+ ## How to get sentence similarity
77
+
78
+ ```python
79
+ from sentence_transformers import SentenceTransformer
80
+ from sentence_transformers.util import pytorch_cos_sim
81
+
82
 
83
+ transformer = SentenceTransformer('shihab17/bangla-sentence-transformer')
84
+
85
+ sentences = ['আমি আপেল খেতে পছন্দ করি। ', 'আমার একটি আপেল মোবাইল আছে।','আপনি কি এখানে কাছাকাছি থাকেন?', 'আশেপাশে কেউ আছেন?']
86
+
87
+ sentences_embeddings = transformer.encode(sentences)
88
+
89
+ for i in range(len(sentences)):
90
+ for j in range(i, len(sentences)):
91
+ sen_1 = sentences[i]
92
+ sen_2 = sentences[j]
93
+ sim_score = float(pytorch_cos_sim(sentences_embeddings[i], sentences_embeddings[j]))
94
+ print(sen_1, '----->', sen_2, sim_score)
95
+ ```
96
 
97
 
98
  ## Evaluation Results
99
 
100
  <!--- Describe how your model was evaluated -->
101
+ ## Best MSE: 7.57528096437454
102
 
103
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
104