--- license: apache-2.0 tags: - generated_from_trainer - text-generation-inference datasets: - kde4 metrics: - bleu model-index: - name: bengali-bn-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: bn-en split: train args: bn-en metrics: - name: Bleu type: bleu value: 50.9475 language: - bn - en pipeline_tag: text2text-generation --- ### How to use You can use this model directly with a pipeline: ```python from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("shihab17/bn-to-en-translation") model = AutoModelForSeq2SeqLM.from_pretrained("shihab17/bn-to-en-translation") sentence = 'ম্যাচ শেষে পুরস্কার বিতরণের মঞ্চে তামিমের মুখে মোস্তাফিজের প্রশংসা শোনা গেল' translator = pipeline("translation_en_to_bn", model=model, tokenizer=tokenizer) output = translator(sentence) print(output) ``` # bengali-en-to-bn This model is a fine-tuned version of [Helsinki-NLP/opus-mt-bn-en](https://huggingface.co/Helsinki-NLP/opus-mt-bn-en) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.6885 - Bleu: 50.9475 - Gen Len: 6.7043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.8866 | 1.0 | 2047 | 1.6397 | 39.6617 | 8.0651 | | 1.5769 | 2.0 | 4094 | 1.6160 | 33.0247 | 8.9865 | | 1.3622 | 3.0 | 6141 | 1.6189 | 53.483 | 6.6037 | | 1.2317 | 4.0 | 8188 | 1.6280 | 51.6882 | 6.762 | | 1.1248 | 5.0 | 10235 | 1.6450 | 53.1619 | 6.5515 | | 1.0297 | 6.0 | 12282 | 1.6587 | 52.3224 | 6.5905 | | 0.9632 | 7.0 | 14329 | 1.6733 | 52.3362 | 6.5441 | | 0.8831 | 8.0 | 16376 | 1.6802 | 49.3544 | 6.8272 | | 0.8291 | 9.0 | 18423 | 1.6868 | 49.9486 | 6.792 | | 0.8175 | 10.0 | 20470 | 1.6885 | 50.9475 | 6.7043 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3