File size: 4,522 Bytes
f97ad62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
- generated_from_trainer
datasets:
- shisa-ai/s1K-1.1-translated-sharegpt
- shisa-ai/gair_limo-translated-sharegpt
model-index:
- name: outputs/ablation-25-reasoning-shisa-v2-llama-3.1-8b-lr8e6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
# train w/ shisa-ai/shisa-v1-athenev2-reannotated-filtered

base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

# User Liger
plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

chat_template: llama3
datasets:
  - path: shisa-ai/s1K-1.1-translated-sharegpt
    # type: sharegpt deprecated
    type: chat_template
    field_messages: conversations
    message_field_role: from
    message_field_content: value
  - path: shisa-ai/gair_limo-translated-sharegpt
    # type: sharegpt deprecated
    type: chat_template
    field_messages: conversations
    message_field_role: from
    message_field_content: value
shuffle_merged_datasets: false
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/ablation-25-reasoning-shisa-v2-llama-3.1-8b-lr8e6

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

# marginal difference
neftune_noise_alpha: 5

use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: ablation-25-reasoning-shisa-v2-llama-3.1-8b-lr8e6

gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 5
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.05
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
save_total_limit: 1 # Only store a single checkpoint
debug:
deepspeed: zero3_bf16.json
weight_decay: 1e-4
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

```

</details><br>

# outputs/ablation-25-reasoning-shisa-v2-llama-3.1-8b-lr8e6

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the shisa-ai/s1K-1.1-translated-sharegpt and the shisa-ai/gair_limo-translated-sharegpt datasets.
It achieves the following results on the evaluation set:
- Loss: 0.6817

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 5.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0922        | 0.0244 | 1    | 0.8761          |
| 0.9325        | 0.5122 | 21   | 0.7089          |
| 0.7914        | 1.0244 | 42   | 0.6543          |
| 0.7889        | 1.5366 | 63   | 0.6405          |
| 0.731         | 2.0488 | 84   | 0.6421          |
| 0.7322        | 2.5610 | 105  | 0.6433          |
| 0.6002        | 3.0732 | 126  | 0.6641          |
| 0.5797        | 3.5854 | 147  | 0.6603          |
| 0.5329        | 4.0976 | 168  | 0.6848          |
| 0.4481        | 4.6098 | 189  | 0.6817          |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0