File size: 3,910 Bytes
f53da98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
library_name: transformers
license: mit
base_model: unsloth/phi-4
tags:
- generated_from_trainer
datasets:
- shisa-ai/shisa-v1-athenev2-reannotated-filtered
model-index:
- name: outputs/ablation-34-rafathenev2.unphi45e6-shisa-v2-unphi-4-14b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
# 33 but w/ 5e-6 LR
base_model: unsloth/phi-4
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
# User Liger
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
chat_template: llama3
datasets:
- path: shisa-ai/shisa-v1-athenev2-reannotated-filtered
# type: sharegpt deprecated
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/ablation-34-rafathenev2.unphi45e6-shisa-v2-unphi-4-14b
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# marginal difference
neftune_noise_alpha: 5
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: ablation-34-rafathenev2.unphi45e6-shisa-v2-unphi-4-14b
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
save_total_limit: 1 # Only store a single checkpoint
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.00
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# outputs/ablation-34-rafathenev2.unphi45e6-shisa-v2-unphi-4-14b
This model is a fine-tuned version of [unsloth/phi-4](https://huggingface.co/unsloth/phi-4) on the shisa-ai/shisa-v1-athenev2-reannotated-filtered dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 34
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4883 | 0.0043 | 1 | 0.3333 |
| 0.4025 | 0.5021 | 117 | 0.2863 |
| 0.3669 | 1.0043 | 234 | 0.2796 |
| 0.3103 | 1.5064 | 351 | 0.2787 |
| 0.3289 | 2.0086 | 468 | 0.2773 |
| 0.3324 | 2.5107 | 585 | 0.2808 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|