--- library_name: transformers license: mit base_model: unsloth/phi-4 tags: - generated_from_trainer datasets: - shisa-ai/shisa-v1-athenev2-reannotated-filtered model-index: - name: outputs/ablation-34-rafathenev2.unphi45e6-shisa-v2-unphi-4-14b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml # 33 but w/ 5e-6 LR base_model: unsloth/phi-4 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false # User Liger plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true chat_template: llama3 datasets: - path: shisa-ai/shisa-v1-athenev2-reannotated-filtered # type: sharegpt deprecated type: chat_template field_messages: conversations message_field_role: from message_field_content: value dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/ablation-34-rafathenev2.unphi45e6-shisa-v2-unphi-4-14b sequence_len: 8192 sample_packing: true pad_to_sequence_len: true # marginal difference neftune_noise_alpha: 5 use_wandb: true wandb_project: shisa-v2 wandb_entity: augmxnt wandb_name: ablation-34-rafathenev2.unphi45e6-shisa-v2-unphi-4-14b gradient_accumulation_steps: 2 micro_batch_size: 4 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: linear learning_rate: 5e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.05 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 0 save_total_limit: 1 # Only store a single checkpoint debug: deepspeed: zero3_bf16.json weight_decay: 0.00 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/ablation-34-rafathenev2.unphi45e6-shisa-v2-unphi-4-14b This model is a fine-tuned version of [unsloth/phi-4](https://huggingface.co/unsloth/phi-4) on the shisa-ai/shisa-v1-athenev2-reannotated-filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.2808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 34 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4883 | 0.0043 | 1 | 0.3333 | | 0.4025 | 0.5021 | 117 | 0.2863 | | 0.3669 | 1.0043 | 234 | 0.2796 | | 0.3103 | 1.5064 | 351 | 0.2787 | | 0.3289 | 2.0086 | 468 | 0.2773 | | 0.3324 | 2.5107 | 585 | 0.2808 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0