--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - generated_from_trainer datasets: - shisa-ai/shisa-v2-code-math-reasoning-sft-mix model-index: - name: outputs/ablation-39-cmrmix.masked-shisa-v2-llama-3.1-8b-lr8e6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml # train w/ shisa-ai/shisa-v1-athenev2-reannotated-filtered base_model: meta-llama/Meta-Llama-3.1-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false # User Liger plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true chat_template: llama3 datasets: - path: shisa-ai/shisa-v2-code-math-reasoning-sft-mix type: chat_template field_messages: conversations message_property_mappings: role: role content: content roles: system: - system assistant: - gpt - model - assistant user: - human - user roles_to_train: ["assistant"] dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/ablation-39-cmrmix.masked-shisa-v2-llama-3.1-8b-lr8e6 sequence_len: 8192 sample_packing: true pad_to_sequence_len: true # marginal difference neftune_noise_alpha: 5 use_wandb: true wandb_project: shisa-v2 wandb_entity: augmxnt wandb_name: ablation-39-cmrmix.masked-shisa-v2-llama-3.1-8b-lr8e6 gradient_accumulation_steps: 2 micro_batch_size: 4 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: linear learning_rate: 8e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 0 save_total_limit: 1 # Only store a single checkpoint debug: deepspeed: zero3_bf16.json weight_decay: 0.00 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/ablation-39-cmrmix.masked-shisa-v2-llama-3.1-8b-lr8e6 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the shisa-ai/shisa-v2-code-math-reasoning-sft-mix dataset. It achieves the following results on the evaluation set: - Loss: 0.4404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9144 | 0.0068 | 1 | 0.6696 | | 0.6754 | 0.5 | 74 | 0.4513 | | 0.6119 | 1.0 | 148 | 0.4259 | | 0.5958 | 1.5 | 222 | 0.4243 | | 0.5772 | 2.0 | 296 | 0.4208 | | 0.5074 | 2.5 | 370 | 0.4395 | | 0.4894 | 3.0 | 444 | 0.4404 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0