File size: 7,528 Bytes
82e9e7e
 
 
 
 
 
01b3b4e
46f4151
 
cb95f7c
1fd8274
4ed23c8
 
 
 
 
f8b478d
58e1599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aeed68
58e1599
a7bb824
58e1599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6fbea9
a7bb824
b6fbea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bb824
b6fbea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30018c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
tags:
- GUI agents
- vision-language-action model
- computer use
---
[Github](https://github.com/showlab/ShowUI/tree/main) | [arXiv](https://arxiv.org/abs/2411.17465) | [HF Paper](https://huggingface.co/papers/2411.17465) | [Spaces](https://huggingface.co/spaces/showlab/ShowUI) | [Datasets](https://huggingface.co/datasets/showlab/ShowUI-desktop-8K) | [Quick Start](https://huggingface.co/showlab/ShowUI-2B) 
<img src="examples/showui.png" alt="ShowUI" width="640">

ShowUI is a lightweight (2B) vision-language-action model designed for GUI agents.

## 🤗 Try our HF Space Demo
https://huggingface.co/spaces/showlab/ShowUI

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64440be5af034cdfd69ca3a7/8-W-6xWN32Fsxed0vzBMK.png)

## ⭐ Quick Start

1. Load model
```python
import ast
import torch
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor

def draw_point(image_input, point=None, radius=5):
    if isinstance(image_input, str):
        image = Image.open(BytesIO(requests.get(image_input).content)) if image_input.startswith('http') else Image.open(image_input)
    else:
        image = image_input

    if point:
        x, y = point[0] * image.width, point[1] * image.height
        ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
    display(image)
    return

model = Qwen2VLForConditionalGeneration.from_pretrained(
    "showlab/ShowUI-2B",
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

min_pixels = 256*28*28
max_pixels = 1344*28*28

processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
```

2. **UI Grounding**
```python
img_url = 'examples/web_dbd7514b-9ca3-40cd-b09a-990f7b955da1.png'
query = "Nahant"


_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": _SYSTEM},
            {"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels},
            {"type": "text", "text": query}
        ],
    }
]

text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]

click_xy = ast.literal_eval(output_text)
# [0.73, 0.21]

draw_point(img_url, click_xy, 10)
```

This will visualize the grounding results like (where the red points are [x,y])

![download](https://github.com/user-attachments/assets/8fe2783d-05b6-44e6-a26c-8718d02b56cb)

3. **UI Navigation**
- Set up system prompt.
```python
_NAV_SYSTEM = """You are an assistant trained to navigate the {_APP} screen. 
Given a task instruction, a screen observation, and an action history sequence, 
output the next action and wait for the next observation. 
Here is the action space:
{_ACTION_SPACE}
"""

_NAV_FORMAT = """
Format the action as a dictionary with the following keys:
{'action': 'ACTION_TYPE', 'value': 'element', 'position': [x,y]}

If value or position is not applicable, set it as `None`.
Position might be [[x1,y1], [x2,y2]] if the action requires a start and end position.
Position represents the relative coordinates on the screenshot and should be scaled to a range of 0-1.
"""

action_map = {
'web': """
1. `CLICK`: Click on an element, value is not applicable and the position [x,y] is required. 
2. `INPUT`: Type a string into an element, value is a string to type and the position [x,y] is required. 
3. `SELECT`: Select a value for an element, value is not applicable and the position [x,y] is required. 
4. `HOVER`: Hover on an element, value is not applicable and the position [x,y] is required.
5. `ANSWER`: Answer the question, value is the answer and the position is not applicable.
6. `ENTER`: Enter operation, value and position are not applicable.
7. `SCROLL`: Scroll the screen, value is the direction to scroll and the position is not applicable.
8. `SELECT_TEXT`: Select some text content, value is not applicable and position [[x1,y1], [x2,y2]] is the start and end position of the select operation.
9. `COPY`: Copy the text, value is the text to copy and the position is not applicable.
""",

'phone': """
1. `INPUT`: Type a string into an element, value is not applicable and the position [x,y] is required. 
2. `SWIPE`: Swipe the screen, value is not applicable and the position [[x1,y1], [x2,y2]] is the start and end position of the swipe operation.
3. `TAP`: Tap on an element, value is not applicable and the position [x,y] is required.
4. `ANSWER`: Answer the question, value is the status (e.g., 'task complete') and the position is not applicable.
5. `ENTER`: Enter operation, value and position are not applicable.
"""
}

_NAV_USER = """{system}
Task: {task}
Observation: <|image_1|>
Action History: {action_history}
What is the next action?
"""
```

```python
img_url = 'examples/chrome.png'
split='web'
system_prompt = _NAV_SYSTEM.format(_APP=split, _ACTION_SPACE=action_map[split])
query = "Search the weather for the New York city."

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": system_prompt},
            {"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels},
            {"type": "text", "text": query}
        ],
    }
]

text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")

generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]

print(output_text)
# {'action': 'CLICK', 'value': None, 'position': [0.49, 0.42]},
# {'action': 'INPUT', 'value': 'weather for New York city', 'position': [0.49, 0.42]},
# {'action': 'ENTER', 'value': None, 'position': None}
```

![download](https://github.com/user-attachments/assets/624097ea-06f2-4c8f-83f6-b6b9ee439c0c)


If you find our work helpful, please consider citing our paper.

```
@misc{lin2024showui,
      title={ShowUI: One Vision-Language-Action Model for GUI Visual Agent}, 
      author={Kevin Qinghong Lin and Linjie Li and Difei Gao and Zhengyuan Yang and Shiwei Wu and Zechen Bai and Weixian Lei and Lijuan Wang and Mike Zheng Shou},
      year={2024},
      eprint={2411.17465},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2411.17465}, 
}
```