--- tags: - GUI agents - vision-language-action model - computer use --- [Github](https://github.com/showlab/ShowUI/tree/main) | [arXiv](https://arxiv.org/abs/2411.17465) | [HF Paper](https://huggingface.co/papers/2411.17465) | [Spaces](https://huggingface.co/spaces/showlab/ShowUI) | [Datasets](https://huggingface.co/datasets/showlab/ShowUI-desktop-8K) | [Quick Start](https://huggingface.co/showlab/ShowUI-2B) ShowUI ShowUI is a lightweight (2B) vision-language-action model designed for GUI agents. ## 🤗 Try our HF Space Demo https://huggingface.co/spaces/showlab/ShowUI ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64440be5af034cdfd69ca3a7/8-W-6xWN32Fsxed0vzBMK.png) ## ⭐ Quick Start 1. Load model ```python import ast import torch from PIL import Image, ImageDraw from qwen_vl_utils import process_vision_info from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor def draw_point(image_input, point=None, radius=5): if isinstance(image_input, str): image = Image.open(BytesIO(requests.get(image_input).content)) if image_input.startswith('http') else Image.open(image_input) else: image = image_input if point: x, y = point[0] * image.width, point[1] * image.height ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') display(image) return model = Qwen2VLForConditionalGeneration.from_pretrained( "showlab/ShowUI-2B", torch_dtype=torch.bfloat16, device_map="auto" ) min_pixels = 256*28*28 max_pixels = 1344*28*28 processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) ``` 2. **UI Grounding** ```python img_url = 'examples/web_dbd7514b-9ca3-40cd-b09a-990f7b955da1.png' query = "Nahant" _SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." messages = [ { "role": "user", "content": [ {"type": "text", "text": _SYSTEM}, {"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels}, {"type": "text", "text": query} ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] click_xy = ast.literal_eval(output_text) # [0.73, 0.21] draw_point(img_url, click_xy, 10) ``` This will visualize the grounding results like (where the red points are [x,y]) ![download](https://github.com/user-attachments/assets/8fe2783d-05b6-44e6-a26c-8718d02b56cb) 3. **UI Navigation** - Set up system prompt. ```python _NAV_SYSTEM = """You are an assistant trained to navigate the {_APP} screen. Given a task instruction, a screen observation, and an action history sequence, output the next action and wait for the next observation. Here is the action space: {_ACTION_SPACE} """ _NAV_FORMAT = """ Format the action as a dictionary with the following keys: {'action': 'ACTION_TYPE', 'value': 'element', 'position': [x,y]} If value or position is not applicable, set it as `None`. Position might be [[x1,y1], [x2,y2]] if the action requires a start and end position. Position represents the relative coordinates on the screenshot and should be scaled to a range of 0-1. """ action_map = { 'web': """ 1. `CLICK`: Click on an element, value is not applicable and the position [x,y] is required. 2. `INPUT`: Type a string into an element, value is a string to type and the position [x,y] is required. 3. `SELECT`: Select a value for an element, value is not applicable and the position [x,y] is required. 4. `HOVER`: Hover on an element, value is not applicable and the position [x,y] is required. 5. `ANSWER`: Answer the question, value is the answer and the position is not applicable. 6. `ENTER`: Enter operation, value and position are not applicable. 7. `SCROLL`: Scroll the screen, value is the direction to scroll and the position is not applicable. 8. `SELECT_TEXT`: Select some text content, value is not applicable and position [[x1,y1], [x2,y2]] is the start and end position of the select operation. 9. `COPY`: Copy the text, value is the text to copy and the position is not applicable. """, 'phone': """ 1. `INPUT`: Type a string into an element, value is not applicable and the position [x,y] is required. 2. `SWIPE`: Swipe the screen, value is not applicable and the position [[x1,y1], [x2,y2]] is the start and end position of the swipe operation. 3. `TAP`: Tap on an element, value is not applicable and the position [x,y] is required. 4. `ANSWER`: Answer the question, value is the status (e.g., 'task complete') and the position is not applicable. 5. `ENTER`: Enter operation, value and position are not applicable. """ } _NAV_USER = """{system} Task: {task} Observation: <|image_1|> Action History: {action_history} What is the next action? """ ``` ```python img_url = 'examples/chrome.png' split='web' system_prompt = _NAV_SYSTEM.format(_APP=split, _ACTION_SPACE=action_map[split]) query = "Search the weather for the New York city." messages = [ { "role": "user", "content": [ {"type": "text", "text": system_prompt}, {"type": "image", "image": img_url, "min_pixels": min_pixels, "max_pixels": max_pixels}, {"type": "text", "text": query} ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] print(output_text) # {'action': 'CLICK', 'value': None, 'position': [0.49, 0.42]}, # {'action': 'INPUT', 'value': 'weather for New York city', 'position': [0.49, 0.42]}, # {'action': 'ENTER', 'value': None, 'position': None} ``` ![download](https://github.com/user-attachments/assets/624097ea-06f2-4c8f-83f6-b6b9ee439c0c) If you find our work helpful, please consider citing our paper. ``` @misc{lin2024showui, title={ShowUI: One Vision-Language-Action Model for GUI Visual Agent}, author={Kevin Qinghong Lin and Linjie Li and Difei Gao and Zhengyuan Yang and Shiwei Wu and Zechen Bai and Weixian Lei and Lijuan Wang and Mike Zheng Shou}, year={2024}, eprint={2411.17465}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2411.17465}, } ```