shramay-palta
commited on
Create demo_t5_qa_pipe.py
Browse files- demo_t5_qa_pipe.py +39 -0
demo_t5_qa_pipe.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from transformers import Text2TextGenerationPipeline
|
5 |
+
|
6 |
+
class DemoT5QAPipeline(Text2TextGenerationPipeline):
|
7 |
+
def _forward(self, model_inputs, **generate_kwargs):
|
8 |
+
if self.framework == "pt":
|
9 |
+
in_b, input_length = model_inputs["input_ids"].shape
|
10 |
+
elif self.framework == "tf":
|
11 |
+
in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy()
|
12 |
+
|
13 |
+
self.check_inputs(
|
14 |
+
input_length,
|
15 |
+
generate_kwargs.get("min_length", self.model.config.min_length),
|
16 |
+
generate_kwargs.get("max_length", self.model.config.max_length),
|
17 |
+
)
|
18 |
+
outputs = self.model.generate(**model_inputs, **generate_kwargs, return_dict_in_generate=True, output_scores=True, max_new_tokens=75)
|
19 |
+
|
20 |
+
# Code from the parent class
|
21 |
+
output_ids = outputs.sequences
|
22 |
+
out_b = output_ids.shape[0]
|
23 |
+
if self.framework == "pt":
|
24 |
+
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:])
|
25 |
+
elif self.framework == "tf":
|
26 |
+
output_ids = tf.reshape(output_ids, (in_b, out_b // in_b, *output_ids.shape[1:]))
|
27 |
+
|
28 |
+
output_sequences = outputs.sequences
|
29 |
+
output_scores = outputs.scores
|
30 |
+
return {"output_ids": output_ids, "output_sequences": output_sequences, "output_scores": output_scores}
|
31 |
+
|
32 |
+
def postprocess(self, model_outputs):
|
33 |
+
guess_text = super().postprocess(model_outputs)[0]['generated_text']
|
34 |
+
|
35 |
+
transition_scores = self.model.compute_transition_scores(model_outputs['output_sequences'], model_outputs['output_scores'], normalize_logits=True)
|
36 |
+
log_probs = np.round(np.exp(transition_scores.cpu().numpy()), 3)[0]
|
37 |
+
guess_prob = np.product(log_probs)
|
38 |
+
|
39 |
+
return {'guess': guess_text, 'confidence': guess_prob}
|