File size: 2,754 Bytes
23b90a8
 
 
 
 
 
33f4783
 
23b90a8
 
 
 
 
 
 
 
 
 
 
33f4783
 
 
23b90a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f4783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23b90a8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Large SSD superU
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large SSD superU

This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4312
- Wer: 120.4531

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer      |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 3.1192        | 3.125  | 100  | 2.9964          | 142.5654 |
| 1.7195        | 6.25   | 200  | 2.7478          | 122.2719 |
| 0.6545        | 9.375  | 300  | 3.0978          | 127.3772 |
| 0.1503        | 12.5   | 400  | 3.6068          | 139.0874 |
| 0.0827        | 15.625 | 500  | 3.6768          | 115.5712 |
| 0.0556        | 18.75  | 600  | 3.7650          | 114.9968 |
| 0.0441        | 21.875 | 700  | 3.7594          | 125.3350 |
| 0.0346        | 25.0   | 800  | 3.8227          | 147.7026 |
| 0.0205        | 28.125 | 900  | 3.9344          | 120.8998 |
| 0.0166        | 31.25  | 1000 | 3.9918          | 109.6682 |
| 0.0127        | 34.375 | 1100 | 3.9241          | 109.3491 |
| 0.009         | 37.5   | 1200 | 4.1503          | 110.7211 |
| 0.0029        | 40.625 | 1300 | 4.1240          | 134.5246 |
| 0.0007        | 43.75  | 1400 | 4.3018          | 105.5520 |
| 0.0007        | 46.875 | 1500 | 4.3464          | 106.8283 |
| 0.0004        | 50.0   | 1600 | 4.3809          | 115.5712 |
| 0.0003        | 53.125 | 1700 | 4.4061          | 120.8998 |
| 0.0002        | 56.25  | 1800 | 4.4205          | 120.2936 |
| 0.0002        | 59.375 | 1900 | 4.4289          | 120.4212 |
| 0.0002        | 62.5   | 2000 | 4.4312          | 120.4531 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3