--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hindi - Shripad Bhat results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 21.451908746990714 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: hi_in split: test args: hi metrics: - name: Wer type: wer value: 22.11 --- # Whisper Small Hindi - Shripad Bhat This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3909 - Wer: 21.4519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4337 | 0.73 | 100 | 0.4874 | 47.5868 | | 0.1894 | 1.47 | 200 | 0.3264 | 23.9482 | | 0.1007 | 2.21 | 300 | 0.3101 | 22.5267 | | 0.0984 | 2.94 | 400 | 0.3064 | 21.5723 | | 0.0555 | 3.67 | 500 | 0.3325 | 22.0251 | | 0.029 | 4.41 | 600 | 0.3439 | 21.4863 | | 0.0163 | 5.15 | 700 | 0.3668 | 21.6468 | | 0.0153 | 5.88 | 800 | 0.3756 | 21.4662 | | 0.0081 | 6.62 | 900 | 0.3888 | 21.5035 | | 0.0059 | 7.35 | 1000 | 0.3909 | 21.4519 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2