--- language: - en license: apache-2.0 library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - image-generation - shuttle instance_prompt: null --- # Shuttle Jaguar Join our [Discord](https://discord.gg/shuttleai) / [Telegram](https://t.me/shuttleai) to get the latest updates, news, and more. These model variants provide different precision levels and formats optimized for diverse hardware capabilities and use cases - [bfloat16](https://huggingface.co/shuttleai/shuttle-jaguar/resolve/main/shuttle-jaguar.safetensors) - [fp8](https://huggingface.co/shuttleai/shuttle-jaguar/resolve/main/fp8/shuttle-jaguar-fp8.safetensors) - [GGUF](https://huggingface.co/shuttleai/shuttle-jaguar/tree/main/gguf) ![image/png](https://huggingface.co/shuttleai/shuttle-jaguar/resolve/main/demo.png) Shuttle Jaguar is a text-to-image AI model designed to generate highly aesthetic, cinematic, and realistic images from textual prompts in just four steps, all while being licensed under Apache 2. ## Using the model via API You can use Shuttle Jaguar via API through ShuttleAI - [ShuttleAI](https://shuttleai.com/) - [ShuttleAI Docs](https://docs.shuttleai.com/) ## Using the model with 🧨 Diffusers Install or upgrade diffusers ```shell pip install -U diffusers ``` Then you can use `DiffusionPipeline` to run the model ```python import torch from diffusers import DiffusionPipeline # Load the diffusion pipeline from a pretrained model, using bfloat16 for tensor types. pipe = DiffusionPipeline.from_pretrained( "shuttleai/shuttle-jaguar", torch_dtype=torch.bfloat16 ).to("cuda") # Uncomment the following line to save VRAM by offloading the model to CPU if needed. # pipe.enable_model_cpu_offload() # Uncomment the lines below to enable torch.compile for potential performance boosts on compatible GPUs. # Note that this can increase loading times considerably. # pipe.transformer.to(memory_format=torch.channels_last) # pipe.transformer = torch.compile( # pipe.transformer, mode="max-autotune", fullgraph=True # ) # Set your prompt for image generation. prompt = "A cat holding a sign that says hello world" # Generate the image using the diffusion pipeline. image = pipe( prompt, height=1024, width=1024, guidance_scale=3.5, num_inference_steps=4, max_sequence_length=256, # Uncomment the line below to use a manual seed for reproducible results. # generator=torch.Generator("cpu").manual_seed(0) ).images[0] # Save the generated image. image.save("shuttle.png") ``` To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation ## Using the model with ComfyUI To run local inference with Shuttle Jaguar using [ComfyUI](https://github.com/comfyanonymous/ComfyUI), you can use this [safetensors file](https://huggingface.co/shuttleai/shuttle-jaguar/blob/main/shuttle-jaguar.safetensors).