--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bert_product_classifier_final results: [] --- # bert_product_classifier_final This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2344 - Accuracy: 0.9470 - F1: 0.9466 - Precision: 0.9467 - Recall: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.85 | 1.0 | 960 | 0.2943 | 0.9090 | 0.9074 | 0.9091 | 0.9090 | | 0.2538 | 2.0 | 1920 | 0.2250 | 0.9332 | 0.9331 | 0.9331 | 0.9332 | | 0.1468 | 3.0 | 2880 | 0.2372 | 0.9384 | 0.9388 | 0.9396 | 0.9384 | | 0.0937 | 4.0 | 3840 | 0.2344 | 0.9470 | 0.9466 | 0.9467 | 0.9470 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3