--- license: mit base_model: - deepseek-ai/DeepSeek-R1 --- # LightWeight Deepseek R1 (2 Hidden Layers Version with Smaller Dimensions) This project is created using the official **Deepseek R1** model script (`modeling_deepseek.py`) from [Hugging Face](https://huggingface.co/deepseek-ai/DeepSeek-R1/blob/main/modeling_deepseek.py). It implements a **2-layer version** of Deepseek R1 with randomly initialized weights and smaller dimensions. ## Purpose The purpose of these weights is to provide a lightweight implementation for researchers who want to study the model architecture and run local quickly. The original **Deepseek R1 model** requires an **8x H200 GPU setup** and runs on the **vLLM/SGLang framework**, making it difficult to deploy on standard hardware. ## Model Structure The three hidden layers consist of: - **A hidden layer: MLA + Dense MLP** - **A hidden layer: MLA + MoE (Mixture of Experts) MLP** The difference between this model and the original **Deepseek R1** is shown below: ```json { "first_k_dense_replace": 1, "intermediate_size": 1024, "n_routed_experts": 64, "num_experts_per_tok": 4, "moe_intermediate_size": 128, "num_hidden_layers": 2, "num_nextn_predict_layers": 0 } ``` ## Usage ```python from transformers import AutoConfig, AutoModelForCausalLM from transformers import AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained('silence09/DeepSeek-R1-Small-2layers', torch_dtype=torch.bfloat16).cuda() tokenizer = AutoTokenizer.from_pretrained('silence09/DeepSeek-R1-Small-2layers') prompt = "Who are u?" messages = [] messages.append({"role": "user", "content": prompt}) prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) generated_ids = model.generate(prompt_tokens, max_new_tokens=100, do_sample=False) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(prompt_tokens, generated_ids) ] completion = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(completion) messages.append({"role": "assistant", "content": completion}) ``` ## More Info It was created using the python script available at [this repository](https://github.com/silencelamb/naked_llama/blob/main/hf_example/create_deepseek_r1_small_2layers.py)