--- license: apache-2.0 base_model: - Qwen/Qwen2.5-7B-Instruct --- # Converted LLaMA from QWEN2-7B-Instruct ## Descritpion This is a converted model from [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) to __LLaMA__ format. This conversion allows you to use Qwen2-7B-Instruct as if it were a LLaMA model, which is convenient for some *inference use cases*. The __precision__ is __excatly the same__ as the original model. ## Usage You can load the model using the `LlamaForCausalLM` class as shown below: ```python from transformers import AutoTokenizer, LlamaForCausalLM prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] # we still use the original tokenizer from Qwen2-7B-Instruct tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct") text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text],return_tensors="pt").cuda() # Converted LlaMA model llama_model = LlamaForCausalLM.from_pretrained( "silence09/Qwen2-7B-Instruct-Converted-Llama", torch_dtype='auto').cuda() llama_generated_ids = llama_model.generate(model_inputs.input_ids, max_new_tokens=32, do_sample=False) llama_generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, llama_generated_ids) ] llama_response = tokenizer.batch_decode(llama_generated_ids, skip_special_tokens=True)[0] print(llama_response) ``` ## Precision Guarantee To comare result with the original model, you can use this [code](https://github.com/silencelamb/naked_llama/blob/main/hf_example/hf_qwen2_7b.py) ## More Info It was converted using the python script available at [this repository](https://github.com/silencelamb/naked_llama/blob/main/hf_example/convert_qwen_to_llama_hf.py)