Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: silmi224/finetune-led-35000
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: exp2-led-risalah_data_v4
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# exp2-led-risalah_data_v4
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [silmi224/finetune-led-35000](https://huggingface.co/silmi224/finetune-led-35000) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.8431
|
21 |
+
- Rouge1: 16.5193
|
22 |
+
- Rouge2: 8.3503
|
23 |
+
- Rougel: 11.7271
|
24 |
+
- Rougelsum: 15.6162
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 1e-06
|
44 |
+
- train_batch_size: 1
|
45 |
+
- eval_batch_size: 1
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 8
|
48 |
+
- total_train_batch_size: 8
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 300
|
52 |
+
- num_epochs: 30
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
|
59 |
+
| 3.3717 | 1.0 | 10 | 2.9094 | 8.8016 | 2.3126 | 6.2771 | 8.3716 |
|
60 |
+
| 3.3649 | 2.0 | 20 | 2.8898 | 9.2296 | 2.5864 | 6.5169 | 8.8408 |
|
61 |
+
| 3.3317 | 3.0 | 30 | 2.8578 | 9.4144 | 2.7476 | 6.7319 | 8.9607 |
|
62 |
+
| 3.2876 | 4.0 | 40 | 2.8156 | 9.2048 | 2.6478 | 6.8107 | 8.8212 |
|
63 |
+
| 3.2244 | 5.0 | 50 | 2.7651 | 7.4966 | 2.3382 | 5.9094 | 6.9392 |
|
64 |
+
| 3.1638 | 6.0 | 60 | 2.7088 | 8.8105 | 2.6633 | 6.809 | 8.3272 |
|
65 |
+
| 3.087 | 7.0 | 70 | 2.6486 | 9.3756 | 2.6957 | 7.2067 | 9.0197 |
|
66 |
+
| 3.0201 | 8.0 | 80 | 2.5859 | 9.5975 | 2.7885 | 6.9418 | 9.0329 |
|
67 |
+
| 2.9335 | 9.0 | 90 | 2.5224 | 9.5107 | 2.374 | 6.8494 | 8.9865 |
|
68 |
+
| 2.8603 | 10.0 | 100 | 2.4585 | 9.8073 | 2.8793 | 7.4445 | 9.4102 |
|
69 |
+
| 2.7774 | 11.0 | 110 | 2.3954 | 10.604 | 2.8025 | 7.8035 | 10.1927 |
|
70 |
+
| 2.7011 | 12.0 | 120 | 2.3347 | 10.3728 | 3.4421 | 7.8112 | 9.5918 |
|
71 |
+
| 2.634 | 13.0 | 130 | 2.2783 | 11.0596 | 3.3087 | 7.9686 | 10.047 |
|
72 |
+
| 2.5608 | 14.0 | 140 | 2.2253 | 12.4204 | 4.4276 | 8.5552 | 11.4364 |
|
73 |
+
| 2.4866 | 15.0 | 150 | 2.1782 | 12.8046 | 4.4267 | 8.8782 | 12.2253 |
|
74 |
+
| 2.4349 | 16.0 | 160 | 2.1369 | 13.0668 | 4.3763 | 8.7619 | 12.104 |
|
75 |
+
| 2.3851 | 17.0 | 170 | 2.1012 | 13.7679 | 4.6022 | 9.1874 | 12.7284 |
|
76 |
+
| 2.3302 | 18.0 | 180 | 2.0691 | 13.2512 | 4.6911 | 9.3187 | 11.8059 |
|
77 |
+
| 2.2836 | 19.0 | 190 | 2.0403 | 14.3491 | 5.7839 | 9.8346 | 13.3638 |
|
78 |
+
| 2.236 | 20.0 | 200 | 2.0150 | 13.9778 | 4.9493 | 9.5799 | 12.6063 |
|
79 |
+
| 2.1965 | 21.0 | 210 | 1.9910 | 14.0795 | 5.1926 | 9.3653 | 13.3801 |
|
80 |
+
| 2.1586 | 22.0 | 220 | 1.9704 | 14.1261 | 5.9801 | 9.7882 | 13.503 |
|
81 |
+
| 2.1325 | 23.0 | 230 | 1.9513 | 14.3575 | 6.0074 | 9.6053 | 13.672 |
|
82 |
+
| 2.099 | 24.0 | 240 | 1.9332 | 15.6132 | 6.3777 | 10.3533 | 14.9225 |
|
83 |
+
| 2.0703 | 25.0 | 250 | 1.9141 | 16.145 | 6.8437 | 10.6729 | 15.0299 |
|
84 |
+
| 2.0438 | 26.0 | 260 | 1.8984 | 15.3881 | 6.5977 | 10.048 | 14.7873 |
|
85 |
+
| 2.0187 | 27.0 | 270 | 1.8846 | 14.1595 | 6.3778 | 9.4685 | 13.3986 |
|
86 |
+
| 1.9954 | 28.0 | 280 | 1.8693 | 14.2631 | 6.3966 | 10.4774 | 13.4271 |
|
87 |
+
| 1.9723 | 29.0 | 290 | 1.8576 | 15.878 | 6.6511 | 10.8733 | 14.6417 |
|
88 |
+
| 1.9465 | 30.0 | 300 | 1.8431 | 16.5193 | 8.3503 | 11.7271 | 15.6162 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.41.2
|
94 |
+
- Pytorch 2.1.2
|
95 |
+
- Datasets 2.19.2
|
96 |
+
- Tokenizers 0.19.1
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 0,
|
3 |
+
"decoder_start_token_id": 2,
|
4 |
+
"early_stopping": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"length_penalty": 2.0,
|
7 |
+
"max_length": 128,
|
8 |
+
"min_length": 40,
|
9 |
+
"no_repeat_ngram_size": 3,
|
10 |
+
"num_beams": 2,
|
11 |
+
"pad_token_id": 1,
|
12 |
+
"transformers_version": "4.41.2",
|
13 |
+
"use_cache": false
|
14 |
+
}
|
runs/Jul22_15-53-12_58e8260c0b68/events.out.tfevents.1721663598.58e8260c0b68.34.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0eb0bc52bd7b8c29bb889038783c9de12a102cecd61359b6338fa44e5608c47
|
3 |
+
size 26412
|
runs/Jul22_15-53-12_58e8260c0b68/events.out.tfevents.1721677383.58e8260c0b68.34.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0ba63f012fc78089c7de0d679051771d6b9da2af8cc02bee926969d2d6cf7be
|
3 |
+
size 562
|