|
"""Tokenization classes for ChatGLM.""" |
|
from typing import List, Optional, Union |
|
import os |
|
|
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from icetk.text_tokenizer import TextTokenizer |
|
import icetk.sentencepiece_model_pb2 as sp_model |
|
from transformers.utils import logging, PaddingStrategy |
|
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding |
|
from typing import Dict |
|
import numpy as np |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { |
|
"silver/chatglm-6b-int4-slim": 2048, |
|
} |
|
|
|
|
|
class SPTokenizer: |
|
def __init__( |
|
self, |
|
vocab_file, |
|
max_blank_length=80, |
|
byte_fallback=True, |
|
): |
|
assert vocab_file is not None |
|
self.vocab_file = vocab_file |
|
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"] |
|
self.max_blank_length = max_blank_length |
|
self.byte_fallback = byte_fallback |
|
self.text_tokenizer = self._build_text_tokenizer(encode_special_tokens=False) |
|
self.special_text_tokenizer = self._build_text_tokenizer(encode_special_tokens=True) |
|
|
|
@staticmethod |
|
def _configure_tokenizer( |
|
text_tokenizer: TextTokenizer, |
|
special_tokens: List[str], |
|
max_blank_length: int, |
|
byte_fallback: bool, |
|
encode_special_tokens=False, |
|
): |
|
|
|
special_token_type = 4 if encode_special_tokens else 3 |
|
for token in special_tokens: |
|
text_tokenizer.proto.pieces.append( |
|
sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=special_token_type) |
|
) |
|
|
|
for token in [SPTokenizer.get_tab_token()] + [ |
|
SPTokenizer.get_blank_token(i) for i in range(2, max_blank_length + 1) |
|
]: |
|
text_tokenizer.proto.pieces.append(sp_model.ModelProto.SentencePiece(piece=token, score=0.0, type=4)) |
|
|
|
if byte_fallback: |
|
text_tokenizer.proto.trainer_spec.byte_fallback = True |
|
for i in range(256): |
|
text_tokenizer.proto.pieces.append( |
|
sp_model.ModelProto.SentencePiece(piece="<0x{:02X}>".format(i), score=0.0, type=6) |
|
) |
|
text_tokenizer.refresh() |
|
|
|
def _build_text_tokenizer(self, encode_special_tokens=False): |
|
tokenizer = TextTokenizer(self.vocab_file) |
|
self._configure_tokenizer( |
|
tokenizer, self.special_tokens, self.max_blank_length, self.byte_fallback, encode_special_tokens |
|
) |
|
return tokenizer |
|
|
|
def _get_text_tokenizer(self, encode_special_tokens=False): |
|
if encode_special_tokens: |
|
return self.special_text_tokenizer |
|
else: |
|
return self.text_tokenizer |
|
|
|
@staticmethod |
|
def get_blank_token(length: int): |
|
assert length >= 2 |
|
return f"<|blank_{length}|>" |
|
|
|
@staticmethod |
|
def get_tab_token(): |
|
return f"<|tab|>" |
|
|
|
@property |
|
def num_text_tokens(self): |
|
return self.text_tokenizer.num_tokens |
|
|
|
@property |
|
def num_tokens(self): |
|
return self.num_text_tokens |
|
|
|
@staticmethod |
|
def _encode_whitespaces(text: str, max_len: int = 80): |
|
text = text.replace("\t", SPTokenizer.get_tab_token()) |
|
for i in range(max_len, 1, -1): |
|
text = text.replace(" " * i, SPTokenizer.get_blank_token(i)) |
|
return text |
|
|
|
def _preprocess(self, text: str, linebreak=True, whitespaces=True): |
|
if linebreak: |
|
text = text.replace("\n", "<n>") |
|
if whitespaces: |
|
text = self._encode_whitespaces(text, max_len=self.max_blank_length) |
|
return text |
|
|
|
def encode( |
|
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True |
|
) -> List[int]: |
|
""" |
|
@param text: Text to encode. |
|
@param linebreak: Whether to encode newline (\n) in text. |
|
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. |
|
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. |
|
@param add_dummy_prefix: Whether to add dummy blank space in the beginning. |
|
""" |
|
text = self._preprocess(text, linebreak, whitespaces) |
|
if not add_dummy_prefix: |
|
text = "<n>" + text |
|
tmp = self._get_text_tokenizer(encode_special_tokens=special_tokens).encode(text) |
|
tokens = [x for x in tmp] |
|
return tokens if add_dummy_prefix else tokens[2:] |
|
|
|
def decode(self, text_ids: List[int], special_tokens=False) -> str: |
|
ids = [int(_id) for _id in text_ids] |
|
ids = [_id for _id in ids if _id >= 0] |
|
text = self._get_text_tokenizer(encode_special_tokens=special_tokens).decode(ids) |
|
text = text.replace("<n>", "\n") |
|
text = text.replace(SPTokenizer.get_tab_token(), "\t") |
|
for i in range(2, self.max_blank_length + 1): |
|
text = text.replace(self.get_blank_token(i), " " * i) |
|
return text |
|
|
|
def tokenize( |
|
self, text: str, linebreak=True, whitespaces=True, special_tokens=False, add_dummy_prefix=True |
|
) -> List[str]: |
|
""" |
|
@param text: Text to encode. |
|
@param linebreak: Whether to encode newline (\n) in text. |
|
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding. |
|
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text. |
|
@param add_dummy_prefix: Whether to add dummy blank space in the beginning. |
|
""" |
|
text = self._preprocess(text, linebreak, whitespaces) |
|
if not add_dummy_prefix: |
|
text = "<n>" + text |
|
tokens = self._get_text_tokenizer(encode_special_tokens=special_tokens).tokenize(text) |
|
return tokens if add_dummy_prefix else tokens[2:] |
|
|
|
def __getitem__(self, x: Union[int, str]): |
|
if isinstance(x, int): |
|
return self.text_tokenizer.convert_id_to_token(x) |
|
elif isinstance(x, str): |
|
return self.text_tokenizer.convert_token_to_id(x) |
|
else: |
|
raise ValueError("The key should be str or int.") |
|
|
|
|
|
class ChatGLMTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding. |
|
|
|
Args: |
|
vocab_file (`str`): |
|
Path to the vocabulary file. |
|
""" |
|
|
|
vocab_files_names = {"vocab_file": "ice_text.model"} |
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES |
|
model_input_names = ["input_ids", "attention_mask", "position_ids"] |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
do_lower_case=False, |
|
remove_space=False, |
|
bos_token='sop', |
|
eos_token='eos', |
|
eop_token='eop', |
|
mask_token='[MASK]', |
|
gmask_token='[gMASK]', |
|
padding_side="left", |
|
**kwargs |
|
) -> None: |
|
super().__init__( |
|
do_lower_case=do_lower_case, |
|
remove_space=remove_space, |
|
padding_side=padding_side, |
|
**kwargs |
|
) |
|
|
|
self.do_lower_case = do_lower_case |
|
self.remove_space = remove_space |
|
self.vocab_file = vocab_file |
|
|
|
self.bos_token = bos_token |
|
self.eos_token = eos_token |
|
self.eop_token = eop_token |
|
self.mask_token = mask_token |
|
self.gmask_token = gmask_token |
|
|
|
self.sp_tokenizer = SPTokenizer(vocab_file) |
|
|
|
""" Initialisation """ |
|
|
|
@property |
|
def eop_token_id(self) -> Optional[int]: |
|
""" |
|
`Optional[int]`: Id of the end of sentence token in the vocabulary. Returns `None` if the token has not been |
|
set. |
|
""" |
|
if self.eop_token is None: |
|
return None |
|
return self.convert_tokens_to_ids(self.eop_token) |
|
|
|
@property |
|
def vocab_size(self): |
|
""" Returns vocab size """ |
|
return self.sp_tokenizer.num_tokens |
|
|
|
def get_vocab(self): |
|
""" Returns vocab as a dict """ |
|
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def preprocess_text(self, inputs): |
|
if self.remove_space: |
|
outputs = " ".join(inputs.strip().split()) |
|
else: |
|
outputs = inputs |
|
|
|
if self.do_lower_case: |
|
outputs = outputs.lower() |
|
|
|
return outputs |
|
|
|
def _tokenize(self, text, **kwargs): |
|
""" Returns a tokenized string. """ |
|
text = self.preprocess_text(text) |
|
|
|
seq = self.sp_tokenizer.tokenize(text) |
|
|
|
return seq |
|
|
|
def decode( |
|
self, |
|
token_ids: Union[List[int], List[List[int]]], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = True, |
|
spaces_between_special_tokens: bool = True, |
|
**kwargs |
|
) -> str: |
|
if isinstance(token_ids[0], list): |
|
tokens = [] |
|
for single_token_ids in token_ids: |
|
if self.pad_token_id in single_token_ids: |
|
single_token_ids = list(filter((self.pad_token_id).__ne__, single_token_ids)) |
|
tokens.append(self.sp_tokenizer.decode(single_token_ids)) |
|
return (tokens) |
|
else: |
|
if self.pad_token_id in token_ids: |
|
token_ids = list(filter((self.pad_token_id).__ne__, token_ids)) |
|
return self.sp_tokenizer.decode(token_ids) |
|
|
|
def _convert_token_to_id(self, token): |
|
""" Converts a token (str) in an id using the vocab. """ |
|
return self.sp_tokenizer[token] |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.sp_tokenizer[index] |
|
|
|
def save_vocabulary(self, save_directory, filename_prefix=None): |
|
""" |
|
Save the vocabulary and special tokens file to a directory. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
filename_prefix (`str`, *optional*): |
|
An optional prefix to add to the named of the saved files. |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
if os.path.isdir(save_directory): |
|
vocab_file = os.path.join( |
|
save_directory, self.vocab_files_names["vocab_file"] |
|
) |
|
else: |
|
vocab_file = save_directory |
|
|
|
with open(self.vocab_file, 'rb') as fin: |
|
proto_str = fin.read() |
|
|
|
with open(vocab_file, "wb") as writer: |
|
writer.write(proto_str) |
|
|
|
return (vocab_file,) |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERT sequence has the following format: |
|
|
|
- single sequence: `[CLS] X [SEP]` |
|
- pair of sequences: `[CLS] A [SEP] B [SEP]` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
mask_ids = self.sp_tokenizer[self.mask_token] |
|
gmask_ids = self.sp_tokenizer[self.gmask_token] |
|
eop_id = self.sp_tokenizer[self.eop_token] |
|
if mask_ids not in token_ids_0 and gmask_ids not in token_ids_0: |
|
token_ids_0 += [gmask_ids] |
|
|
|
if token_ids_0[-1] != mask_ids and token_ids_0[-1] != gmask_ids: |
|
token_ids_0 += [self.sp_tokenizer[self.eos_token]] |
|
|
|
token_ids_0 += [self.sp_tokenizer[self.bos_token]] |
|
|
|
if token_ids_1 is not None: |
|
if not token_ids_1 or token_ids_1[-1] != eop_id: |
|
token_ids_1 += [eop_id] |
|
token_ids_0 += token_ids_1 |
|
|
|
return token_ids_0 |
|
|
|
def _pad( |
|
self, |
|
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], |
|
max_length: Optional[int] = None, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
) -> dict: |
|
""" |
|
Pad encoded inputs (on left/right and up to predefined length or max length in the batch) |
|
|
|
Args: |
|
encoded_inputs: |
|
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). |
|
max_length: maximum length of the returned list and optionally padding length (see below). |
|
Will truncate by taking into account the special tokens. |
|
padding_strategy: PaddingStrategy to use for padding. |
|
|
|
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch |
|
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) |
|
- PaddingStrategy.DO_NOT_PAD: Do not pad |
|
The tokenizer padding sides are defined in self.padding_side: |
|
|
|
- 'left': pads on the left of the sequences |
|
- 'right': pads on the right of the sequences |
|
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability |
|
`>= 7.5` (Volta). |
|
return_attention_mask: |
|
(optional) Set to False to avoid returning attention mask (default: set to model specifics) |
|
""" |
|
|
|
bos_token_id = self.sp_tokenizer[self.bos_token] |
|
mask_token_id = self.sp_tokenizer[self.mask_token] |
|
gmask_token_id = self.sp_tokenizer[self.gmask_token] |
|
assert self.padding_side == "left" |
|
|
|
required_input = encoded_inputs[self.model_input_names[0]] |
|
seq_length = len(required_input) |
|
|
|
if padding_strategy == PaddingStrategy.LONGEST: |
|
max_length = len(required_input) |
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): |
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of |
|
|
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length |
|
|
|
|
|
if max_length is not None: |
|
if "attention_mask" not in encoded_inputs: |
|
if bos_token_id in required_input: |
|
context_length = required_input.index(bos_token_id) |
|
else: |
|
context_length = seq_length |
|
attention_mask = np.ones((1, seq_length, seq_length)) |
|
attention_mask = np.tril(attention_mask) |
|
attention_mask[:, :, :context_length] = 1 |
|
attention_mask = np.bool_(attention_mask < 0.5) |
|
encoded_inputs["attention_mask"] = attention_mask |
|
|
|
if "position_ids" not in encoded_inputs: |
|
position_ids = np.arange(seq_length, dtype=np.int64) |
|
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id |
|
if mask_token in required_input: |
|
mask_position = required_input.index(mask_token) |
|
position_ids[context_length:] = mask_position |
|
block_position_ids = np.concatenate( |
|
[np.zeros(context_length, dtype=np.int64), |
|
np.arange(1, seq_length - context_length + 1, dtype=np.int64)]) |
|
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0) |
|
|
|
if needs_to_be_padded: |
|
difference = max_length - len(required_input) |
|
|
|
if "attention_mask" in encoded_inputs: |
|
encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"], |
|
pad_width=[(0, 0), (difference, 0), (difference, 0)], |
|
mode='constant', constant_values=True) |
|
if "token_type_ids" in encoded_inputs: |
|
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ |
|
"token_type_ids" |
|
] |
|
if "special_tokens_mask" in encoded_inputs: |
|
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] |
|
if "position_ids" in encoded_inputs: |
|
encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"], |
|
pad_width=[(0, 0), (difference, 0)]) |
|
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input |
|
|
|
return encoded_inputs |
|
|