File size: 2,443 Bytes
eb41cc9 35b32c5 0740170 eb41cc9 35b32c5 8454aaf eb41cc9 35b32c5 8454aaf c3f0671 eb41cc9 35b32c5 e5290a9 c3f0671 e5290a9 c3f0671 e5290a9 c3f0671 e5290a9 c3f0671 184ed26 c3f0671 184ed26 c3f0671 184ed26 c3f0671 eb41cc9 35b32c5 eb41cc9 35b32c5 eb41cc9 35b32c5 eb41cc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
language:
- yue
license: apache-2.0
tags:
- whisper-event
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- cer
base_model: openai/whisper-large-v2
model-index:
- name: Whisper Large V2 Cantonese
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: yue
split: test
metrics:
- type: cer
value: 6.7274
name: Cer
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: Common Voice zh-HK
type: common_voice
args: zh-HK
metrics:
- type: cer
value: 6.7274
name: Test CER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large V2 Cantonese
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 yue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2807
- Cer: 6.7274
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0032 | 13.01 | 1000 | 0.2318 | 6.8569 |
| 0.002 | 26.01 | 2000 | 0.2404 | 7.1524 |
| 0.0001 | 39.02 | 3000 | 0.2807 | 6.7274 |
| 0.0001 | 53.01 | 4000 | 0.2912 | 6.7517 |
| 0.0 | 66.01 | 5000 | 0.2957 | 6.7638 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|