File size: 2,443 Bytes
eb41cc9
35b32c5
0740170
eb41cc9
 
35b32c5
8454aaf
eb41cc9
 
35b32c5
8454aaf
 
c3f0671
eb41cc9
35b32c5
e5290a9
 
 
c3f0671
e5290a9
 
 
 
c3f0671
e5290a9
c3f0671
e5290a9
c3f0671
184ed26
 
c3f0671
184ed26
 
 
 
 
c3f0671
184ed26
c3f0671
eb41cc9
 
 
 
 
35b32c5
eb41cc9
35b32c5
eb41cc9
35b32c5
 
eb41cc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
language:
- yue
license: apache-2.0
tags:
- whisper-event
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- cer
base_model: openai/whisper-large-v2
model-index:
- name: Whisper Large V2 Cantonese
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0
      type: mozilla-foundation/common_voice_11_0
      config: yue
      split: test
    metrics:
    - type: cer
      value: 6.7274
      name: Cer
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: Common Voice zh-HK
      type: common_voice
      args: zh-HK
    metrics:
    - type: cer
      value: 6.7274
      name: Test CER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large V2 Cantonese

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 yue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2807
- Cer: 6.7274

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0032        | 13.01 | 1000 | 0.2318          | 6.8569 |
| 0.002         | 26.01 | 2000 | 0.2404          | 7.1524 |
| 0.0001        | 39.02 | 3000 | 0.2807          | 6.7274 |
| 0.0001        | 53.01 | 4000 | 0.2912          | 6.7517 |
| 0.0           | 66.01 | 5000 | 0.2957          | 6.7638 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2