--- license: apache-2.0 tags: - generated_from_trainer datasets: - scientific_lay_summarisation metrics: - rouge model-index: - name: t5-small-scientific_lay_summarisation results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scientific_lay_summarisation type: scientific_lay_summarisation config: elife split: validation args: elife metrics: - name: Rouge1 type: rouge value: 0.0546 --- # t5-small-scientific_lay_summarisation This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the scientific_lay_summarisation dataset. It achieves the following results on the evaluation set: - Loss: 3.0503 - Rouge1: 0.0546 - Rouge2: 0.0154 - Rougel: 0.0461 - Rougelsum: 0.0462 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 272 | 3.1627 | 0.048 | 0.0123 | 0.0402 | 0.0402 | 19.0 | | 3.6506 | 2.0 | 544 | 3.0881 | 0.0524 | 0.0143 | 0.0441 | 0.0442 | 19.0 | | 3.6506 | 3.0 | 816 | 3.0586 | 0.0543 | 0.0155 | 0.0461 | 0.0462 | 19.0 | | 3.2737 | 4.0 | 1088 | 3.0503 | 0.0546 | 0.0154 | 0.0461 | 0.0462 | 19.0 | ### Framework versions - Transformers 4.27.2 - Pytorch 2.1.0+cu121 - Datasets 2.11.0 - Tokenizers 0.13.3