Update model card with FP16 info (#1)
Browse files- model card update with fp16 info (5bff5510294775fc06e3f9f5ce04873378a2f38d)
- remove gpu type for memory usage (5624ab98611c4a437f4c1a382e93fb69d06666be)
- adding nvidia l4 inference speed info (ed4c792921bb46c80c3a8407e085ca8c7b5fa5b2)
- being more general about minimal version with fp16 and gpus cc 8.9+ (448101435807a563cc516cb0ef1174037977ad8d)
README.md
CHANGED
@@ -1,67 +1,87 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- de
|
4 |
-
- en
|
5 |
-
- es
|
6 |
-
- fr
|
7 |
-
---
|
8 |
-
|
9 |
-
# Model Card for `answer-finder-v1-L-multilingual`
|
10 |
-
|
11 |
-
This model is a question answering model developed by Sinequa. It produces two lists of logit scores corresponding to
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
| F1 Score on SQuAD v2 EN with
|
30 |
-
| F1 Score on SQuAD v2
|
31 |
-
| F1 Score on SQuAD v2
|
32 |
-
| F1 Score on SQuAD v2
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
| NVIDIA A10
|
40 |
-
| NVIDIA T4
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
- en
|
5 |
+
- es
|
6 |
+
- fr
|
7 |
+
---
|
8 |
+
|
9 |
+
# Model Card for `answer-finder-v1-L-multilingual`
|
10 |
+
|
11 |
+
This model is a question answering model developed by Sinequa. It produces two lists of logit scores corresponding to the start token and end token of an answer.
|
12 |
+
|
13 |
+
Model name: `answer-finder-v1-L-multilingual`
|
14 |
+
|
15 |
+
## Supported Languages
|
16 |
+
|
17 |
+
The model was trained and tested in the following languages:
|
18 |
+
|
19 |
+
- English
|
20 |
+
- French
|
21 |
+
- German
|
22 |
+
- Spanish
|
23 |
+
|
24 |
+
## Scores
|
25 |
+
|
26 |
+
| Metric | Value |
|
27 |
+
|:--------------------------------------------------------------|-------:|
|
28 |
+
| F1 Score on SQuAD v2 EN with Hugging Face evaluation pipeline | 75 |
|
29 |
+
| F1 Score on SQuAD v2 EN with Haystack evaluation pipeline | 75 |
|
30 |
+
| F1 Score on SQuAD v2 FR with Haystack evaluation pipeline | 73.4 |
|
31 |
+
| F1 Score on SQuAD v2 DE with Haystack evaluation pipeline | 90.8 |
|
32 |
+
| F1 Score on SQuAD v2 ES with Haystack evaluation pipeline | 67.1 |
|
33 |
+
|
34 |
+
## Inference Time
|
35 |
+
|
36 |
+
| GPU | Quantization type | Batch size 1 | Batch size 32 |
|
37 |
+
|:------------------------------------------|:------------------|---------------:|---------------:|
|
38 |
+
| NVIDIA A10 | FP16 | 2 ms | 30 ms |
|
39 |
+
| NVIDIA A10 | FP32 | 4 ms | 83 ms |
|
40 |
+
| NVIDIA T4 | FP16 | 3 ms | 65 ms |
|
41 |
+
| NVIDIA T4 | FP32 | 14 ms | 373 ms |
|
42 |
+
| NVIDIA L4 | FP16 | 2 ms | 38 ms |
|
43 |
+
| NVIDIA L4 | FP32 | 5 ms | 124 ms |
|
44 |
+
|
45 |
+
**Note that the Answer Finder models are only used at query time.**
|
46 |
+
|
47 |
+
## Gpu Memory usage
|
48 |
+
|
49 |
+
| Quantization type | Memory |
|
50 |
+
|:-------------------------------------------------|-----------:|
|
51 |
+
| FP16 | 550 MiB |
|
52 |
+
| FP32 | 1050 MiB |
|
53 |
+
|
54 |
+
Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
|
55 |
+
size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
|
56 |
+
can be around 0.5 to 1 GiB depending on the used GPU.
|
57 |
+
|
58 |
+
## GPU Memory usage
|
59 |
+
|
60 |
+
| Quantization type | Memory |
|
61 |
+
|:-------------------------------------------------|-----------:|
|
62 |
+
| FP16 | 547 MiB |
|
63 |
+
| FP32 | 1060 MiB |
|
64 |
+
|
65 |
+
Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which can be around 0.5 to 1 GiB depending on the used GPU.
|
66 |
+
|
67 |
+
## Requirements
|
68 |
+
|
69 |
+
- Minimal Sinequa version: 11.10.0
|
70 |
+
- Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
|
71 |
+
- [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)
|
72 |
+
|
73 |
+
## Model Details
|
74 |
+
|
75 |
+
### Overview
|
76 |
+
|
77 |
+
- Number of parameters: 110 million
|
78 |
+
- Base language model: [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased)
|
79 |
+
pre-trained by Sinequa in English, French, German and Spanish
|
80 |
+
- Insensitive to casing and accents
|
81 |
+
|
82 |
+
### Training Data
|
83 |
+
|
84 |
+
- [SQuAD v2](https://rajpurkar.github.io/SQuAD-explorer/)
|
85 |
+
- [French-SQuAD](https://github.com/Alikabbadj/French-SQuAD) + French translation of SQuAD v2 "impossible" query-passage pairs
|
86 |
+
- [GermanQuAD](https://www.deepset.ai/germanquad) + German translation of SQuAD v2 "impossible" query-passage pairs
|
87 |
+
- [SQuAD-es-v2](https://github.com/ccasimiro88/TranslateAlignRetrieve)
|