skirres commited on
Commit
cca459d
1 Parent(s): 1d9a754

Initial commit (#1)

Browse files

- Model sources and card (4a45b579d62b5db216f283d1d31dfc57870fd44c)

Files changed (7) hide show
  1. 1_Pooling/config.json +7 -0
  2. README.md +105 -0
  3. config.json +23 -0
  4. modules.json +20 -0
  5. pytorch_model.bin +3 -0
  6. reduction_layer.bin +3 -0
  7. tokenizer.json +0 -0
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 512,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ ---
8
+
9
+ # Model Card for `vectorizer-v1-S-multilingual`
10
+
11
+ This model is a vectorizer developed by Sinequa. It produces an embedding vector given a passage or a query. The
12
+ passage vectors are stored in our vector index and the query vector is used at query time to look up relevant passages
13
+ in the index.
14
+
15
+ Model name: `vectorizer-v1-S-multilingual`
16
+
17
+ ## Supported Languages
18
+
19
+ The model was trained and tested in the following languages:
20
+
21
+ - English
22
+ - French
23
+ - German
24
+ - Spanish
25
+
26
+ ## Scores
27
+
28
+ | Metric | Value |
29
+ |:-----------------------|------:|
30
+ | Relevance (Recall@100) | 0.448 |
31
+
32
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
33
+ [details below](#evaluation-metrics)).
34
+
35
+ ## Inference Times
36
+
37
+ | GPU | Batch size 1 (at query time) | Batch size 32 (at indexing) |
38
+ |:-----------|-----------------------------:|----------------------------:|
39
+ | NVIDIA A10 | 2 ms | 14 ms |
40
+ | NVIDIA T4 | 4 ms | 51 ms |
41
+
42
+ The inference times only measure the time the model takes to process a single batch, it does not include pre- or
43
+ post-processing steps like the tokenization.
44
+
45
+ ## Requirements
46
+
47
+ - Minimal Sinequa version: 11.10.0
48
+ - GPU memory usage: 580 MiB
49
+
50
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
51
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
52
+ can be around 0.5 to 1 GiB depending on the used GPU.
53
+
54
+ ## Model Details
55
+
56
+ ### Overview
57
+
58
+ - Number of parameters: 39 million
59
+ - Base language model: Homegrown Sinequa BERT-Small ([Paper](https://arxiv.org/abs/1908.08962)) pretrained in the four
60
+ supported languages
61
+ - Insensitive to casing and accents
62
+ - Training procedure: Query-passage pairs using in-batch negatives
63
+
64
+ ### Training Data
65
+
66
+ - Natural Questions
67
+ ([Paper](https://research.google/pubs/pub47761/),
68
+ [Official Page](https://github.com/google-research-datasets/natural-questions))
69
+ - Original English dataset
70
+ - Translated datasets for the other three supported languages
71
+
72
+ ### Evaluation Metrics
73
+
74
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
75
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
76
+
77
+ | Dataset | Recall@100 |
78
+ |:------------------|-----------:|
79
+ | Average | 0.448 |
80
+ | | |
81
+ | Arguana | 0.835 |
82
+ | CLIMATE-FEVER | 0.350 |
83
+ | DBPedia Entity | 0.287 |
84
+ | FEVER | 0.645 |
85
+ | FiQA-2018 | 0.305 |
86
+ | HotpotQA | 0.396 |
87
+ | MS MARCO | 0.533 |
88
+ | NFCorpus | 0.162 |
89
+ | NQ | 0.701 |
90
+ | Quora | 0.947 |
91
+ | SCIDOCS | 0.194 |
92
+ | SciFact | 0.580 |
93
+ | TREC-COVID | 0.051 |
94
+ | Webis-Touche-2020 | 0.289 |
95
+
96
+
97
+ We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its
98
+ multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics
99
+ for the existing languages.
100
+
101
+ | Language | Recall@100 |
102
+ |:---------|-----------:|
103
+ | French | N/A |
104
+ | German | N/A |
105
+ | Spanish | N/A |
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 512,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 2048,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 8,
16
+ "num_hidden_layers": 4,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "transformers_version": "4.22.2",
20
+ "type_vocab_size": 2,
21
+ "use_cache": true,
22
+ "vocab_size": 50099
23
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1005c255896b3a1bcfcc0ac37a25e4c4b51df0c2b8e5cfaac72b08b72ca9e3c
3
+ size 155174221
reduction_layer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84d3da79f783f981db2e2ff48de325475d6f30d96dc53fcef2ef11f438444d3e
3
+ size 526247
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff