File size: 1,497 Bytes
f54cf3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from typing import Dict, List, Optional, Union

import numpy as np
import requests
from mteb import DRESModel
from tqdm import tqdm


class SionicEmbeddingModel(DRESModel):
    def __init__(self, url: str, instruction: Optional[str] = None, batch_size: int = 128, dimension: int = 2048, **kwargs) -> None:
        self.url = url
        self.instruction = instruction
        self.batch_size = batch_size
        self.dimension = dimension

    def get_embeddings(self, queries: List[str]) -> np.ndarray:
        return np.asarray(
            requests.post(self.url, json={'inputs': queries}).json()['embedding'],
            dtype=np.float32,
        ).reshape(len(queries), self.dimension)

    def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray:
        return self.encode([f'{self.instruction}{query}' for query in queries])

    def encode_corpus(self, corpus: List[Union[Dict[str, str], str]], **kwargs) -> np.ndarray:
        sentences: List[str] = (
            [f"{doc.get('title', '')} {doc['text']}".strip() for doc in corpus]
            if isinstance(corpus[0], dict)
            else corpus
        )

        return self.encode(sentences)

    def encode(self, sentences: List[str], **kwargs) -> np.ndarray:
        return np.concatenate(
            [
                self.get_embeddings(sentences[idx:idx + self.batch_size])
                for idx in tqdm(range(0, len(sentences), self.batch_size), desc='encode')
            ],
            axis=0,
        )