--- license: mit datasets: - squad_v2 - squad language: - en library_name: transformers tags: - deberta - deberta-v3 - question-answering - squad - squad_v2 --- # deberta-v3-large for Extractive QA This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. This model was trained using LoRA available through the [PEFT library](https://github.com/huggingface/peft). ## Overview **Language model:** deberta-v3-large **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Infrastructure**: 1x NVIDIA 3070 ## Model Usage ### Using the Merged Model ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "sjrhuschlee/deberta-v3-large-squad2" # a) Using pipelines nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) qa_input = { 'question': 'Where do I live?', 'context': 'My name is Sarah and I live in London' } res = nlp(qa_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ### Using with Peft **NOTE**: This requires code in the PR https://github.com/huggingface/peft/pull/473 for the PEFT library. ```python #!pip install peft from peft import LoraConfig, PeftModelForQuestionAnswering from transformers import AutoModelForQuestionAnswering, AutoTokenizer model_name = "sjrhuschlee/deberta-v3-large-squad2" ```