|
|
|
|
|
import os |
|
import torch |
|
from torch import nn, Tensor |
|
from transformers import AutoModel, AutoConfig |
|
from huggingface_hub import snapshot_download |
|
from typing import Dict |
|
|
|
|
|
class BGEM3InferenceModel(nn.Module): |
|
def __init__( |
|
self, |
|
model_name: str = "BAAI/bge-m3", |
|
colbert_dim: int = -1, |
|
) -> None: |
|
super().__init__() |
|
|
|
model_name = snapshot_download( |
|
repo_id=model_name, |
|
allow_patterns=[ |
|
"pytorch_model.bin", |
|
"config.json", |
|
], |
|
) |
|
|
|
self.config = AutoConfig.from_pretrained(model_name) |
|
self.model = AutoModel.from_pretrained(model_name) |
|
|
|
def dense_embedding(self, last_hidden_state: Tensor) -> Tensor: |
|
return last_hidden_state[:, 0] |
|
|
|
def forward(self, input_ids: Tensor, attention_mask: Tensor) -> Dict[str, Tensor]: |
|
with torch.no_grad(): |
|
last_hidden_state = self.model( |
|
input_ids=input_ids, attention_mask=attention_mask, return_dict=True |
|
).last_hidden_state |
|
|
|
output = {} |
|
dense_vecs = self.dense_embedding(last_hidden_state) |
|
output["dense_vecs"] = dense_vecs |
|
|
|
return output |
|
|