File size: 14,709 Bytes
a07f59a c60cbed a07f59a c60cbed a07f59a 8c5912a a07f59a 8c5912a a07f59a 8c5912a a07f59a 8c5912a c60cbed a07f59a c60cbed a07f59a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe8a3fb9a70>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe8a3fb9b00>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe8a3fb9b90>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe8a3fb9c20>",
"_build": "<function ActorCriticPolicy._build at 0x7fe8a3fb9cb0>",
"forward": "<function ActorCriticPolicy.forward at 0x7fe8a3fb9d40>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe8a3fb9dd0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fe8a3fb9e60>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe8a3fb9ef0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe8a3fb9f80>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe8a3fbd050>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fe8a3ff9e10>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 491520,
"_total_timesteps": 480000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652105563.5177898,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3SqLwDqQ28vLahvStPGr27wWC9Gk2NPAAAgD8AAIA/84m/PfbsB7rMeCY4K0uKM8l4rDlpa0S3AACAPwAAgD8YXdS+9NmPvOfBP7sCb7a5BXYvPorHgDoAAIA/AACAP7PtJT2uhYK6laDIuibRM7UqKNy6XeLnOQAAgD8AAIA/ZiRXPFwzcrpr6tc6TVTUNBa5z7oNxPa5AACAPwAAgD9mUo87KSBUujbztzrRs6o2w74kuuU51LkAAIA/AACAP220Az7DQVe6jbI2PEIsnrj6uZ85ZnWQuQAAgD8AAIA/zWwTvPbodLpMIiI5ppQwtY6M5zomexe0AACAPwAAgD863yk+xVSQPCtPGr0Ht7W7/s4fPiKfuLwAAIA/AACAP2b8HT4pfgE72wBnu1XbyrhPv9E8Br/TuQAAgD8AAIA/APg7vbj+vTi2r426c6rOtJ6XYrupJ6w5AACAPwAAgD9znYk9XuoZP2ivgj3b+KC+vuJ6PK7IYLwAAAAAAAAAAM1FwD1cIze6mmOAPGc4lbya83k5ZoWCvQAAAAAAAIA/AP9HvXt0yLjIKeG6kS6btpXAzzsVfwY6AACAPwAAgD9mUmA87FHeNhhs/zmE6m80P8iVu8laGLkAAIA/AACAPwANoL1cTwW6CmE0PG2DIrn5n5y7q5MhuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.02400000000000002,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI51Hxf0fMYECUhpRSlIwBbJRN6AOMAXSUR0CLyrELH+6zdX2UKGgGaAloD0MIVFInoInfXUCUhpRSlGgVTegDaBZHQIvSBhUipvR1fZQoaAZoCWgPQwiwdD48S5pkQJSGlFKUaBVN6ANoFkdAi+Zz+m3vyHV9lChoBmgJaA9DCM8UOq8xLmRAlIaUUpRoFU3oA2gWR0CL6uNgBtDVdX2UKGgGaAloD0MI9z5VhYYGYkCUhpRSlGgVTegDaBZHQIvxue18b711fZQoaAZoCWgPQwiNRj6veOVaQJSGlFKUaBVN6ANoFkdAi/IwNTcZcnV9lChoBmgJaA9DCFt9dVWgLGFAlIaUUpRoFU3oA2gWR0CL8s4PPLPldX2UKGgGaAloD0MIt0Htt3aPXECUhpRSlGgVTegDaBZHQIwCh3aBZp11fZQoaAZoCWgPQwj+KOrMPVleQJSGlFKUaBVN6ANoFkdAjAXEy1uzhXV9lChoBmgJaA9DCIDW/PhLAzhAlIaUUpRoFUvsaBZHQIwLU1dgOSZ1fZQoaAZoCWgPQwgWTz3SYOtgQJSGlFKUaBVN6ANoFkdAjBHEYwZflnV9lChoBmgJaA9DCBCugEI9AT3AlIaUUpRoFUuvaBZHQIwlEnogV451fZQoaAZoCWgPQwi4I5wWvOpdQJSGlFKUaBVN6ANoFkdAjC44lyBClnV9lChoBmgJaA9DCCnPvBx2K1hAlIaUUpRoFU3oA2gWR0CMNbmYBvJjdX2UKGgGaAloD0MIZMkcy7sZX0CUhpRSlGgVTegDaBZHQIw5tX3g1m91fZQoaAZoCWgPQwjUtfY+VR5WQJSGlFKUaBVN6ANoFkdAjEvDxsl9jXV9lChoBmgJaA9DCCy5isXvNGJAlIaUUpRoFU3oA2gWR0CMTZPMSsbOdX2UKGgGaAloD0MIRX9o5skJXkCUhpRSlGgVTegDaBZHQIxY6H/Lkjp1fZQoaAZoCWgPQwgJwap6+V9hQJSGlFKUaBVN6ANoFkdAjGAc4YJmd3V9lChoBmgJaA9DCPp+arx0E1xAlIaUUpRoFU3oA2gWR0CMaFX7tRekdX2UKGgGaAloD0MI12mkpfK8WkCUhpRSlGgVTegDaBZHQIx/EfeUILR1fZQoaAZoCWgPQwi2SxsOy8VgQJSGlFKUaBVN6ANoFkdAjIyOzY287XV9lChoBmgJaA9DCPCkhcsq4FxAlIaUUpRoFU3oA2gWR0CMjRlT3qRmdX2UKGgGaAloD0MIqfqVzgc4YkCUhpRSlGgVTegDaBZHQIyN0HQhOgx1fZQoaAZoCWgPQwig+3Jmu6NhQJSGlFKUaBVN6ANoFkdAjKBnmJWNm3V9lChoBmgJaA9DCP1oOGVuIFxAlIaUUpRoFU3oA2gWR0CMo/uSfUWmdX2UKGgGaAloD0MIOkGbHD75McCUhpRSlGgVS+poFkdAjLDYnOSntXV9lChoBmgJaA9DCCmwAKYMPVpAlIaUUpRoFU3oA2gWR0CMsQIkZ75VdX2UKGgGaAloD0MImpSCbi94VUCUhpRSlGgVTegDaBZHQIzFP1xsEaF1fZQoaAZoCWgPQwg0L4fdd4hPQJSGlFKUaBVN6ANoFkdAjdpYdp7CznV9lChoBmgJaA9DCLACfLd59GVAlIaUUpRoFU3oA2gWR0CN4bk1/DtPdX2UKGgGaAloD0MI3GJ+bmhsYECUhpRSlGgVTegDaBZHQI3lsnPVurJ1fZQoaAZoCWgPQwhH6dK/JLdVQJSGlFKUaBVN6ANoFkdAjffk4Nqgy3V9lChoBmgJaA9DCGSUZ16OUmBAlIaUUpRoFU3oA2gWR0CN+bJaq0dBdX2UKGgGaAloD0MIgQncuhuQaUCUhpRSlGgVTbgBaBZHQI4B524d6s11fZQoaAZoCWgPQwgA4q5eRTYUQJSGlFKUaBVLuWgWR0COAjBVuJk5dX2UKGgGaAloD0MIx0s3icFyYUCUhpRSlGgVTegDaBZHQI4ECxeLNwB1fZQoaAZoCWgPQwiQLjatFPI0QJSGlFKUaBVNAQFoFkdAjgiD3mFJx3V9lChoBmgJaA9DCH8xW7Kq3mFAlIaUUpRoFU3oA2gWR0COCeM1CPZJdX2UKGgGaAloD0MIkC3L12XFZECUhpRSlGgVTegDaBZHQI4QWZeAuqZ1fZQoaAZoCWgPQwjAQubKoKtfQJSGlFKUaBVN6ANoFkdAjiNKw6hg3XV9lChoBmgJaA9DCKku4GWGFSZAlIaUUpRoFUv4aBZHQI4sUeXAuZl1fZQoaAZoCWgPQwgoRwGiYD1aQJSGlFKUaBVN6ANoFkdAji/KekHlfnV9lChoBmgJaA9DCEmfVtGfTmBAlIaUUpRoFU3oA2gWR0COMG33Hq/udX2UKGgGaAloD0MI9utOdx60YkCUhpRSlGgVTegDaBZHQI5DxKBd2Pl1fZQoaAZoCWgPQwiuKCUEq1lfQJSGlFKUaBVN6ANoFkdAjkeXM6ij+XV9lChoBmgJaA9DCHmRCfi1VGJAlIaUUpRoFU3oA2gWR0COVQFGoaUBdX2UKGgGaAloD0MIqMe2DLg4Y0CUhpRSlGgVTegDaBZHQI5qr1uivgZ1fZQoaAZoCWgPQwgAVkeO9DdgQJSGlFKUaBVN6ANoFkdAjnQkb5uZTnV9lChoBmgJaA9DCNYCe0wkNmBAlIaUUpRoFU3oA2gWR0COlebMHKOldX2UKGgGaAloD0MI8fEJ2XlsXUCUhpRSlGgVTegDaBZHQI6X81dgOSZ1fZQoaAZoCWgPQwguVP61vGZfQJSGlFKUaBVN6ANoFkdAjqHTzundf3V9lChoBmgJaA9DCPYHym37/V5AlIaUUpRoFU3oA2gWR0COoioUBXCCdX2UKGgGaAloD0MIIxYx7DCwYUCUhpRSlGgVTegDaBZHQI6kFvybx3F1fZQoaAZoCWgPQwgpCB7f3hBiQJSGlFKUaBVN6ANoFkdAjqj1+I/JNnV9lChoBmgJaA9DCKgAGM+gml5AlIaUUpRoFU3oA2gWR0COserU9ZA6dX2UKGgGaAloD0MIGsOcoE3/ZUCUhpRSlGgVTegDaBZHQI7HHy3CsOp1fZQoaAZoCWgPQwgW3A94YCZqQJSGlFKUaBVNLwNoFkdAjsn+MIeHSHV9lChoBmgJaA9DCIV7Zd6qIltAlIaUUpRoFU3oA2gWR0CO0Blp48lpdX2UKGgGaAloD0MIkQn4NZILXkCUhpRSlGgVTegDaBZHQI7TYQHzH0d1fZQoaAZoCWgPQwiwqfOoeJxhQJSGlFKUaBVN6ANoFkdAjtP8cENe+nV9lChoBmgJaA9DCKH3xhAATFxAlIaUUpRoFU3oA2gWR0CO6Yh0Qsf8dX2UKGgGaAloD0MIbFuU2SC3MECUhpRSlGgVS8FoFkdAju12NWEK3XV9lChoBmgJaA9DCBDpt6+DXGJAlIaUUpRoFU3oA2gWR0CO9yLVFx4qdX2UKGgGaAloD0MIdsO2RZlNW0CUhpRSlGgVTegDaBZHQI8NbtJFspJ1fZQoaAZoCWgPQwiUSnhCr+1XQJSGlFKUaBVN6ANoFkdAjxdSofjjrHV9lChoBmgJaA9DCHHjFvNzy15AlIaUUpRoFU3oA2gWR0CQIn7IT4+KdX2UKGgGaAloD0MI2q1lMpw/YECUhpRSlGgVTegDaBZHQJAjgT37DVJ1fZQoaAZoCWgPQwg7jEl/L6teQJSGlFKUaBVN6ANoFkdAkCiHYYixFHV9lChoBmgJaA9DCK4OgLirL2BAlIaUUpRoFU3oA2gWR0CQKLX5nDiwdX2UKGgGaAloD0MIMIMxIlGQQ0CUhpRSlGgVTQgBaBZHQJApb9n9Nvh1fZQoaAZoCWgPQwgGhNbDl/BZQJSGlFKUaBVN6ANoFkdAkCm+d5IH1XV9lChoBmgJaA9DCJ6WH7jKollAlIaUUpRoFU3oA2gWR0CQLC4d6sySdX2UKGgGaAloD0MISbvRx/yLYkCUhpRSlGgVTegDaBZHQJAwcn4O+Zh1fZQoaAZoCWgPQwhKtOTxtKldQJSGlFKUaBVN6ANoFkdAkDqxY3eenXV9lChoBmgJaA9DCHDvGvSlsmFAlIaUUpRoFU3oA2gWR0CQPBoJzDGcdX2UKGgGaAloD0MIM8SxLu4tYUCUhpRSlGgVTegDaBZHQJBA6zVtoBd1fZQoaAZoCWgPQwiOBBps6iBhQJSGlFKUaBVN6ANoFkdAkEE+loDgZXV9lChoBmgJaA9DCEKWBRN/01pAlIaUUpRoFU3oA2gWR0CQTG6oVEeAdX2UKGgGaAloD0MIzTrj+2LnZECUhpRSlGgVTegDaBZHQJBOcgxJul51fZQoaAZoCWgPQwjgRzXsd0hiQJSGlFKUaBVN6ANoFkdAkFLerIYFaHV9lChoBmgJaA9DCO84RUdyl2BAlIaUUpRoFU3oA2gWR0CQXIcM3IdVdX2UKGgGaAloD0MIDDohdFDaYUCUhpRSlGgVTegDaBZHQJBw1SxZ+x51fZQoaAZoCWgPQwhhp1g1CMZYQJSGlFKUaBVN6ANoFkdAkHHFwDNhVnV9lChoBmgJaA9DCGaIY13cmF9AlIaUUpRoFU3oA2gWR0CQdnXfqHGkdX2UKGgGaAloD0MIq7AZ4AIWYkCUhpRSlGgVTegDaBZHQJB2oG6f8Mx1fZQoaAZoCWgPQwheoQ+WsaZeQJSGlFKUaBVN6ANoFkdAkHdSeZof0XV9lChoBmgJaA9DCIUKDi8I12RAlIaUUpRoFU3oA2gWR0CQd53MY/FBdX2UKGgGaAloD0MIWHGqtTDlXkCUhpRSlGgVTegDaBZHQJB5vND+irV1fZQoaAZoCWgPQwiA1ZEjnRpdQJSGlFKUaBVN6ANoFkdAkH2S00FbFHV9lChoBmgJaA9DCPd2S3LA5mJAlIaUUpRoFU3oA2gWR0CQhqQF9roGdX2UKGgGaAloD0MIDafMzTfyGsCUhpRSlGgVS/toFkdAkIdvkvK2a3V9lChoBmgJaA9DCKj91k6UeV5AlIaUUpRoFU3oA2gWR0CQh94EwFkhdX2UKGgGaAloD0MI1zBD4wl4YUCUhpRSlGgVTegDaBZHQJCL7ULDye91fZQoaAZoCWgPQwg1m8dhMLtiQJSGlFKUaBVN6ANoFkdAkIw2Dg62fHV9lChoBmgJaA9DCM5UiEfiwUJAlIaUUpRoFUviaBZHQJCMhLuhK151fZQoaAZoCWgPQwh7FoTyPk9bQJSGlFKUaBVN6ANoFkdAkJWfYao/A3V9lChoBmgJaA9DCNJT5BBxXGJAlIaUUpRoFU3oA2gWR0CQl3I9C/oJdX2UKGgGaAloD0MINSkF3d5YYkCUhpRSlGgVTegDaBZHQJCbtEpiI+J1fZQoaAZoCWgPQwjkg57Nqh5fQJSGlFKUaBVN6ANoFkdAkKVet8uzyHVlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 150,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |