--- language: - uk license: mit library_name: transformers datasets: - skypro1111/ubertext-2-news-verbalized widget: - text: Очікувалось, що цей застосунок буде запущено о 11 ранку 22.08.2025, але розробники затягнули святкування і запуск був відкладений на 2 тижні. --- # Model Card for mbart-large-50-verbalization ## Model Description `mbart-large-50-verbalization` is a fine-tuned version of the [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) model, specifically designed for the task of verbalizing Ukrainian text to prepare it for Text-to-Speech (TTS) systems. This model aims to transform structured data like numbers and dates into their fully expanded textual representations in Ukrainian. ## Architecture This model is based on the [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) architecture, renowned for its effectiveness in translation and text generation tasks across numerous languages. ## Training Data The model was fine-tuned on a subset of 457,610 sentences from the Ubertext dataset, focusing on news content. The verbalized equivalents were created using Google Gemini Pro, providing a rich basis for learning text transformation tasks. Dataset [skypro1111/ubertext-2-news-verbalized](https://huggingface.co/datasets/skypro1111/ubertext-2-news-verbalized) ## Training Procedure The model underwent 410,000 training steps (1 epoch). ```python from transformers import MBartForConditionalGeneration, AutoTokenizer, Trainer, TrainingArguments from datasets import load_dataset, DatasetDict import torch model_name = "facebook/mbart-large-50" dataset = load_dataset("skypro1111/ubertext-2-news-verbalized") dataset = dataset.train_test_split(test_size=0.1) datasets = DatasetDict({ 'train': dataset['train'], 'test': dataset['test'] }) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.src_lang = "uk_XX" tokenizer.tgt_lang = "uk_XX" def preprocess_data(examples): model_inputs = tokenizer(examples["inputs"], max_length=1024, truncation=True, padding="max_length") with tokenizer.as_target_tokenizer(): labels = tokenizer(examples["labels"], max_length=1024, truncation=True, padding="max_length") model_inputs["labels"] = labels["input_ids"] return model_inputs datasets = datasets.map(preprocess_data, batched=True) model = MBartForConditionalGeneration.from_pretrained(model_name) training_args = TrainingArguments( output_dir=f"./results/{model_name}-verbalization", evaluation_strategy="steps", eval_steps=5000, save_strategy="steps", save_steps=1000, save_total_limit=40, learning_rate=2e-5, per_device_train_batch_size=2, per_device_eval_batch_size=2, num_train_epochs=2, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=datasets["train"], eval_dataset=datasets["test"], ) trainer.train() trainer.save_model(f"./saved_models/{model_name}-verbalization") ``` ## Usage ```python from transformers import MBartForConditionalGeneration, AutoTokenizer import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_name = "skypro1111/mbart-large-50-verbalization" model = MBartForConditionalGeneration.from_pretrained( model_name, low_cpu_mem_usage=True, device_map=device, ) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.src_lang = "uk_XX" tokenizer.tgt_lang = "uk_XX" input_text = ":Цей додаток вийде 15.06.2025." encoded_input = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=1024).to(device) output_ids = model.generate(**encoded_input, max_length=1024, num_beams=5, early_stopping=True) output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(output_text) ``` ## ONNX usage ```bash poetry new verbalizer rm -rf verbalizer/tests/ verbalizer/verbalizer/ verbalizer/README.md cd verbalizer/ poetry shell wget https://huggingface.co/skypro1111/mbart-large-50-verbalization/resolve/main/onnx/infer_onnx_hf.py poetry add transformers huggingface_hub onnxruntime-gpu torch python infer_onnx_hf.py ``` ```python import onnxruntime import numpy as np from transformers import AutoTokenizer import time import os from huggingface_hub import hf_hub_download model_name = "skypro1111/mbart-large-50-verbalization" def download_model_from_hf(repo_id=model_name, model_dir="./"): """Download ONNX models from HuggingFace Hub.""" files = ["onnx/encoder_model.onnx", "onnx/decoder_model.onnx", "onnx/decoder_model.onnx_data"] for file in files: hf_hub_download( repo_id=repo_id, filename=file, local_dir=model_dir, ) return files def create_onnx_session(model_path, use_gpu=True): """Create an ONNX inference session.""" # Session options session_options = onnxruntime.SessionOptions() session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL session_options.enable_mem_pattern = True session_options.enable_mem_reuse = True session_options.intra_op_num_threads = 8 session_options.log_severity_level = 1 cuda_provider_options = { 'device_id': 0, 'arena_extend_strategy': 'kSameAsRequested', 'gpu_mem_limit': 0, # 0 means no limit 'cudnn_conv_algo_search': 'DEFAULT', 'do_copy_in_default_stream': True, } print(f"Available providers: {onnxruntime.get_available_providers()}") if use_gpu and 'CUDAExecutionProvider' in onnxruntime.get_available_providers(): providers = [('CUDAExecutionProvider', cuda_provider_options)] print("Using CUDA for inference") else: providers = ['CPUExecutionProvider'] print("Using CPU for inference") session = onnxruntime.InferenceSession( model_path, providers=providers, sess_options=session_options ) return session def generate_text(text, tokenizer, encoder_session, decoder_session, max_length=128): """Generate text for a single input.""" # Prepare input inputs = tokenizer(text, return_tensors="np", padding=True, truncation=True, max_length=512) input_ids = inputs["input_ids"].astype(np.int64) attention_mask = inputs["attention_mask"].astype(np.int64) # Run encoder encoder_outputs = encoder_session.run( output_names=["last_hidden_state"], input_feed={ "input_ids": input_ids, "attention_mask": attention_mask, } )[0] # Initialize decoder input decoder_input_ids = np.array([[tokenizer.pad_token_id]], dtype=np.int64) # Generate sequence for _ in range(max_length): # Run decoder decoder_outputs = decoder_session.run( output_names=["logits"], input_feed={ "input_ids": decoder_input_ids, "encoder_hidden_states": encoder_outputs, "encoder_attention_mask": attention_mask, } )[0] # Get next token next_token = decoder_outputs[:, -1:].argmax(axis=-1) decoder_input_ids = np.concatenate([decoder_input_ids, next_token], axis=-1) # Check if sequence is complete if tokenizer.eos_token_id in decoder_input_ids[0]: break # Decode sequence output_text = tokenizer.decode(decoder_input_ids[0], skip_special_tokens=True) return output_text def main(): # Print available providers print("Available providers:", onnxruntime.get_available_providers()) # Download models from HuggingFace print("\nDownloading models from HuggingFace...") encoder_path, decoder_path, _ = download_model_from_hf() # Load tokenizer and models print("\nLoading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.src_lang = "uk_UA" tokenizer.tgt_lang = "uk_UA" # Create ONNX sessions print("\nLoading encoder...") encoder_session = create_onnx_session(encoder_path) print("\nLoading decoder...") decoder_session = create_onnx_session(decoder_path) # Test examples test_inputs = [ "мій телефон 0979456822", "квартира площею 11 тис кв м.", "Пропонували хабар у 1 млрд грн.", "1 2 3 4 5 6 7 8 9 10.", "Крім того, парламентарій володіє шістьма ділянками землі (дві площею 25000 кв м, дві по 15000 кв м та дві по 10000 кв м) розташованими в Сосновій Балці Луганської області.", "Підписуючи цей документ у 2003 році, голови Росії та України мали намір зміцнити співпрацю та сприяти розширенню двосторонніх відносин.", "Очікується, що цей застосунок буде запущено 22.08.2025.", "За інформацією від Державної служби з надзвичайних ситуацій станом на 7 ранку 15 липня.", ] print("\nWarming up...") _ = generate_text(test_inputs[0], tokenizer, encoder_session, decoder_session) print("\nRunning inference...") for text in test_inputs: print(f"\nInput: {text}") t = time.time() output = generate_text(text, tokenizer, encoder_session, decoder_session) print(f"Output: {output}") print(f"Time: {time.time() - t:.2f} seconds") if __name__ == "__main__": main() ``` ## Performance Evaluation metrics were not explicitly used for this model. Its performance is primarily demonstrated through its application in enhancing the naturalness of TTS outputs. ## Limitations and Ethical Considerations Users should be aware of the model's potential limitations in understanding highly nuanced or domain-specific content. Ethical considerations, including fairness and bias, are also crucial when deploying this model in real-world applications. ## Citation Ubertext 2.0 ``` @inproceedings{chaplynskyi-2023-introducing, title = "Introducing {U}ber{T}ext 2.0: A Corpus of Modern {U}krainian at Scale", author = "Chaplynskyi, Dmytro", booktitle = "Proceedings of the Second Ukrainian Natural Language Processing Workshop", month = may, year = "2023", address = "Dubrovnik, Croatia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.unlp-1.1", pages = "1--10", } ``` mBart-large-50 ``` @article{tang2020multilingual, title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning}, author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan}, year={2020}, eprint={2008.00401}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License This model is released under the MIT License, in line with the base mbart-large-50 model.