from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class GPTRefactConfig(PretrainedConfig): model_type = "gpt_refact" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=49216, n_positions=1024, n_embd=768, n_layer=12, n_head=12, n_inner=None, resid_pdrop=0.1, embd_pdrop=0.1, attn_pdrop=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, scale_attn_weights=True, use_cache=True, bos_token_id=-1, eos_token_id=0, max_position_embeddings: int = 2048, multi_query: bool = True, attention_softmax_in_fp32=False, scale_attention_softmax_in_fp32=False, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.attention_softmax_in_fp32 = attention_softmax_in_fp32 self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32 self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.multi_query = multi_query self.max_position_embeddings = max_position_embeddings super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)