smallcloudteam commited on
Commit
f54e655
·
1 Parent(s): 319a8e1

add module

Browse files
codify/__init__.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import TYPE_CHECKING
2
+
3
+ from transformers.utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
4
+
5
+
6
+ _import_structure = {
7
+ "configuration_codify": ["CODIFY_PRETRAINED_CONFIG_ARCHIVE_MAP", "CodifyConfig", "CodifyOnnxConfig"],
8
+ }
9
+ try:
10
+ if not is_tokenizers_available():
11
+ raise OptionalDependencyNotAvailable()
12
+ except OptionalDependencyNotAvailable:
13
+ pass
14
+ else:
15
+ _import_structure["tokenization_codify_fast"] = ["CodifyTokenizerFast"]
16
+
17
+ try:
18
+ if not is_torch_available():
19
+ raise OptionalDependencyNotAvailable()
20
+ except OptionalDependencyNotAvailable:
21
+ pass
22
+ else:
23
+ _import_structure["modeling_codify"] = [
24
+ "CODIFY_PRETRAINED_MODEL_ARCHIVE_LIST",
25
+ "CodifyForCausalLM",
26
+ "CodifyModel",
27
+ "CodifyPreTrainedModel",
28
+ ]
29
+
30
+ if TYPE_CHECKING:
31
+ from .configuration_codify import CODIFY_PRETRAINED_CONFIG_ARCHIVE_MAP, CodifyConfig, CodifyOnnxConfig
32
+
33
+ try:
34
+ if not is_tokenizers_available():
35
+ raise OptionalDependencyNotAvailable()
36
+ except OptionalDependencyNotAvailable:
37
+ pass
38
+ else:
39
+ from .tokenization_codify_fast import CodifyTokenizerFast
40
+
41
+ try:
42
+ if not is_torch_available():
43
+ raise OptionalDependencyNotAvailable()
44
+ except OptionalDependencyNotAvailable:
45
+ pass
46
+ else:
47
+ from .modeling_codify import (
48
+ CODIFY_PRETRAINED_MODEL_ARCHIVE_LIST,
49
+ CodifyForCausalLM,
50
+ CodifyModel,
51
+ CodifyPreTrainedModel,
52
+ )
53
+
54
+ else:
55
+ import sys
56
+
57
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
codify/configuration_codify.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ from typing import TYPE_CHECKING, Any, List, Mapping, Optional
3
+
4
+ from packaging import version
5
+
6
+ from transformers import is_torch_available
7
+
8
+ if TYPE_CHECKING:
9
+ from transformers import PreTrainedTokenizer, TensorType
10
+
11
+ from transformers.configuration_utils import PretrainedConfig
12
+ from transformers.onnx import OnnxConfigWithPast, PatchingSpec
13
+ from transformers.utils import logging
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+ CODIFY_PRETRAINED_CONFIG_ARCHIVE_MAP = {
18
+ "smallcloudai/codify_medium_multi": "https://huggingface.co/smallcloudai/codify_medium_multi/blob/main/config.json",
19
+ "smallcloudai/codify_3b_multi": "https://huggingface.co/smallcloudai/codify_3b_multi/blob/main/config.json",
20
+ }
21
+
22
+
23
+ class CodifyConfig(PretrainedConfig):
24
+ model_type = "codify"
25
+ keys_to_ignore_at_inference = ["past_key_values"]
26
+ attribute_map = {
27
+ "num_hidden_layers": "L",
28
+ "num_attention_heads": "attn_heads",
29
+ "hidden_size": "E",
30
+ }
31
+
32
+ def __init__(
33
+ self,
34
+ vocab_size=51305,
35
+ layer_norm_epsilon=1e-5,
36
+ initializer_range=0.02,
37
+ use_cache=True,
38
+ bos_token_id=1,
39
+ eos_token_id=2,
40
+ mlp_mult=4,
41
+ tie_word_embeddings=False,
42
+ **kwargs,
43
+ ):
44
+ self.vocab_size = vocab_size
45
+ self.mlp_mult = mlp_mult
46
+ self.layer_norm_epsilon = layer_norm_epsilon
47
+ self.initializer_range = initializer_range
48
+ self.use_cache = use_cache
49
+
50
+ self.bos_token_id = bos_token_id
51
+ self.eos_token_id = eos_token_id
52
+
53
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id,
54
+ tie_word_embeddings=tie_word_embeddings, **kwargs)
55
+
56
+
57
+ class CodifyOnnxConfig(OnnxConfigWithPast):
58
+ torch_onnx_minimum_version = version.parse("1.12")
59
+
60
+ def __init__(
61
+ self,
62
+ config: PretrainedConfig,
63
+ task: str = "default",
64
+ patching_specs: List[PatchingSpec] = None,
65
+ use_past: bool = False,
66
+ ):
67
+ super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
68
+ if not getattr(self._config, "pad_token_id", None):
69
+ # TODO: how to do that better?
70
+ self._config.pad_token_id = 0
71
+
72
+ @property
73
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
74
+ common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
75
+ if self.use_past:
76
+ # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
77
+ self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True)
78
+ common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
79
+ else:
80
+ common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
81
+
82
+ return common_inputs
83
+
84
+ @property
85
+ def num_layers(self) -> int:
86
+ return self._config.num_hidden_layers
87
+
88
+ @property
89
+ def num_attention_heads(self) -> int:
90
+ return self._config.n_head
91
+
92
+ @property
93
+ def atol_for_validation(self) -> float:
94
+ return 1e-3
95
+
96
+ def generate_dummy_inputs(
97
+ self,
98
+ tokenizer: "PreTrainedTokenizer",
99
+ batch_size: int = -1,
100
+ seq_length: int = -1,
101
+ is_pair: bool = False,
102
+ framework: Optional["TensorType"] = None,
103
+ ) -> Mapping[str, Any]:
104
+ common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
105
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
106
+ )
107
+
108
+ # We need to order the input in the way they appears in the forward()
109
+ ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
110
+
111
+ # Need to add the past_keys
112
+ if self.use_past:
113
+ if not is_torch_available():
114
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
115
+ else:
116
+ import torch
117
+
118
+ batch, seqlen = common_inputs["input_ids"].shape
119
+ # Not using the same length for past_key_values
120
+ past_key_values_length = seqlen + 2
121
+ head_dim = self._config.hidden_size // self.num_attention_heads
122
+ past_key_shape = (
123
+ batch * self.num_attention_heads,
124
+ head_dim,
125
+ past_key_values_length,
126
+ )
127
+ past_value_shape = (
128
+ batch * self.num_attention_heads,
129
+ past_key_values_length,
130
+ head_dim,
131
+ )
132
+ ordered_inputs["past_key_values"] = [
133
+ (torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers)
134
+ ]
135
+
136
+ ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
137
+ if self.use_past:
138
+ mask_dtype = ordered_inputs["attention_mask"].dtype
139
+ ordered_inputs["attention_mask"] = torch.cat(
140
+ [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
141
+ )
142
+
143
+ return ordered_inputs
144
+
145
+ @property
146
+ def default_onnx_opset(self) -> int:
147
+ return 13
148
+
149
+
150
+ from transformers import AutoConfig
151
+
152
+ AutoConfig.register(CodifyConfig.model_type, CodifyConfig)
codify/modeling_codify.py ADDED
@@ -0,0 +1,773 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import warnings
3
+ from typing import Optional, Tuple, Union
4
+
5
+ import torch
6
+ import torch.utils.checkpoint
7
+ from torch import nn
8
+ from torch.nn import CrossEntropyLoss, LayerNorm
9
+ from torch.nn import functional as F
10
+ from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, \
11
+ add_start_docstrings_to_model_forward
12
+ from transformers.modeling_outputs import (
13
+ BaseModelOutputWithPast,
14
+ CausalLMOutputWithPast,
15
+ )
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import logging
18
+
19
+ from .configuration_codify import CodifyConfig
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ _CHECKPOINT_FOR_DOC = "smallcloudai/codify_medium_multi"
24
+ _CONFIG_FOR_DOC = "CodifyConfig"
25
+ _TOKENIZER_FOR_DOC = "CodifyTokenizerFast"
26
+
27
+
28
+ CODIFY_PRETRAINED_MODEL_ARCHIVE_LIST = [
29
+ "smallcloudai/codify_medium_multi",
30
+ "smallcloudai/codify_3b_multi"
31
+ ]
32
+
33
+ def _make_causal_mask(
34
+ input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
35
+ ) -> torch.BoolTensor:
36
+ """
37
+ Make causal mask used for self-attention.
38
+ """
39
+ batch_size, target_length = input_ids_shape
40
+ mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
41
+ # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
42
+ seq_ids = torch.arange(target_length, device=device)
43
+ mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
44
+
45
+ if past_key_values_length > 0:
46
+ mask[:, :past_key_values_length] = False
47
+
48
+ expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
49
+ return expanded_mask
50
+
51
+
52
+ def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
53
+ """
54
+ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
55
+ """
56
+ batch_size, src_length = mask.shape
57
+ tgt_length = tgt_length if tgt_length is not None else src_length
58
+
59
+ expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
60
+ return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
61
+
62
+
63
+ def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
64
+ """
65
+ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
66
+ relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
67
+ `softmax(l+a) = softmax(l)`. Based on
68
+ https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
69
+ TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
70
+
71
+ Args:
72
+ Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
73
+ attention_mask (`torch.Tensor`):
74
+ Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
75
+ num_heads (`int`, *required*):
76
+ number of heads
77
+ dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
78
+ dtype of the output tensor
79
+ """
80
+ batch_size, seq_length = attention_mask.shape
81
+ closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
82
+ base = torch.tensor(
83
+ 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
84
+ )
85
+ powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
86
+ slopes = torch.pow(base, powers)
87
+
88
+ if closest_power_of_2 != num_heads:
89
+ extra_base = torch.tensor(
90
+ 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
91
+ )
92
+ num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
93
+ extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
94
+ slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
95
+
96
+ # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
97
+ # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
98
+ # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
99
+ # => the query_length dimension will then be broadcasted correctly
100
+ # This is more or less identical to T5's relative position bias:
101
+ # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
102
+ arange_tensor = ((attention_mask.cumsum(dim=-1)) * attention_mask)[:, None, :]
103
+ alibi = slopes[..., None] * arange_tensor
104
+ return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
105
+
106
+
107
+
108
+ def codify_gelu_forward(x: torch.Tensor) -> torch.Tensor:
109
+ """
110
+ Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
111
+ make the model jitable.
112
+
113
+ Args:
114
+ x (`torch.tensor`, *required*):
115
+ input hidden states
116
+ """
117
+ return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
118
+
119
+
120
+ def codify_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
121
+ """
122
+ gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
123
+ 0.3989423 * x * torch.exp(-0.5 * x * x)
124
+
125
+ Args:
126
+ g (`torch.tensor`, *required*):
127
+ gradient output tensor
128
+ x (`torch.tensor`, *required*):
129
+ input tensor
130
+ """
131
+ x = x[0] # x is a tuple of 1 element, needs to unpack it first
132
+ tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
133
+ # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
134
+ ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
135
+ return ff * g
136
+
137
+
138
+ class GeLUFunction(torch.autograd.Function):
139
+ @staticmethod
140
+ def forward(ctx, input: torch.Tensor) -> torch.Tensor:
141
+ ctx.save_for_backward(input)
142
+ return codify_gelu_forward(input)
143
+
144
+ @staticmethod
145
+ def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
146
+ input = ctx.saved_tensors
147
+ tmp = codify_gelu_back(grad_output, input)
148
+ return tmp
149
+
150
+
151
+ class CodifyGelu(nn.Module):
152
+ def __init__(self):
153
+ super().__init__()
154
+
155
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
156
+ if self.training:
157
+ return GeLUFunction.apply(x)
158
+ else:
159
+ return codify_gelu_forward(x)
160
+
161
+
162
+ class CodifyAttention(nn.Module):
163
+ def __init__(self, config: CodifyConfig):
164
+ super().__init__()
165
+
166
+ self.hidden_size = config.hidden_size
167
+ self.num_heads = config.num_attention_heads
168
+ self.head_dim = self.hidden_size // self.num_heads
169
+ self.split_size = self.hidden_size
170
+
171
+ if self.head_dim * self.num_heads != self.hidden_size:
172
+ raise ValueError(
173
+ f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
174
+ f" {self.num_heads})."
175
+ )
176
+
177
+ # Layer-wise attention scaling
178
+ # 8.0 = self.head_dim
179
+ self.inv_norm_factor = 8.0 / self.head_dim
180
+ self.beta = 1.0
181
+
182
+ self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
183
+ self.dense = nn.Linear(self.hidden_size, self.hidden_size)
184
+
185
+ def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
186
+ """
187
+ Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
188
+ storage as `fused_qkv`
189
+
190
+ Args:
191
+ fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
192
+
193
+ Returns:
194
+ query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
195
+ value: [batch_size, seq_length, num_heads, head_dim]
196
+ """
197
+ batch_size, seq_length, _ = fused_qkv.shape
198
+ q, k, v = fused_qkv.chunk(3, dim=-1)
199
+ return q.view(batch_size, seq_length, self.num_heads, self.head_dim),\
200
+ k.view(batch_size, seq_length, self.num_heads, self.head_dim),\
201
+ v.view(batch_size, seq_length, self.num_heads, self.head_dim)
202
+
203
+ def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
204
+ """
205
+ Merge heads together over the last dimenstion
206
+
207
+ Args:
208
+ x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
209
+
210
+ Returns:
211
+ torch.tensor: [batch_size, seq_length, num_heads * head_dim]
212
+ """
213
+ # What we want to achieve is:
214
+ # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
215
+ batch_size_and_num_heads, seq_length, _ = x.shape
216
+ batch_size = batch_size_and_num_heads // self.num_heads
217
+
218
+ # First view to decompose the batch size
219
+ # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
220
+ x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
221
+
222
+ # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
223
+ x = x.permute(0, 2, 1, 3)
224
+
225
+ # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
226
+ return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
227
+
228
+ def forward(
229
+ self,
230
+ hidden_states: torch.Tensor,
231
+ alibi: torch.Tensor,
232
+ attention_mask: torch.Tensor,
233
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
234
+ head_mask: Optional[torch.Tensor] = None,
235
+ use_cache: bool = False,
236
+ output_attentions: bool = False,
237
+ ):
238
+ fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
239
+
240
+ # 3 x [batch_size, seq_length, num_heads, head_dim]
241
+ (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
242
+
243
+ batch_size, q_length, _, _ = query_layer.shape
244
+
245
+ query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
246
+ key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
247
+ value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
248
+ if layer_past is not None:
249
+ past_key, past_value = layer_past
250
+ # concatenate along seq_length dimension:
251
+ # - key: [batch_size * self.num_heads, head_dim, kv_length]
252
+ # - value: [batch_size * self.num_heads, kv_length, head_dim]
253
+ key_layer = torch.cat((past_key, key_layer), dim=2)
254
+ value_layer = torch.cat((past_value, value_layer), dim=1)
255
+
256
+ _, _, kv_length = key_layer.shape
257
+
258
+ if use_cache is True:
259
+ present = (key_layer, value_layer)
260
+ else:
261
+ present = None
262
+
263
+ # [batch_size * num_heads, q_length, kv_length]
264
+ # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
265
+ matmul_result = alibi.baddbmm(
266
+ batch1=query_layer,
267
+ batch2=key_layer,
268
+ beta=self.beta,
269
+ alpha=self.inv_norm_factor,
270
+ )
271
+
272
+ # change view to [batch_size, num_heads, q_length, kv_length]
273
+ attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
274
+
275
+ # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
276
+ input_dtype = attention_scores.dtype
277
+ # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
278
+ if input_dtype == torch.float16:
279
+ attention_scores = attention_scores.to(torch.float)
280
+ attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
281
+ attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
282
+
283
+ if head_mask is not None:
284
+ attention_probs = attention_probs * head_mask
285
+
286
+ # change view [batch_size x num_heads, q_length, kv_length]
287
+ attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
288
+
289
+ # matmul: [batch_size * num_heads, q_length, head_dim]
290
+ context_layer = torch.bmm(attention_probs_reshaped, value_layer)
291
+
292
+ # change view [batch_size, num_heads, q_length, head_dim]
293
+ context_layer = self._merge_heads(context_layer)
294
+
295
+ output_tensor = self.dense(context_layer)
296
+ outputs = (output_tensor, present)
297
+ if output_attentions:
298
+ outputs += (attention_probs,)
299
+
300
+ return outputs
301
+
302
+
303
+ class CodifyMLP(nn.Module):
304
+ def __init__(self, config: CodifyConfig):
305
+ super().__init__()
306
+ hidden_size = config.hidden_size
307
+ self.dense_h_to_4h = nn.Linear(hidden_size, config.mlp_mult * hidden_size)
308
+ self.gelu_impl = CodifyGelu()
309
+ self.dense_4h_to_h = nn.Linear(config.mlp_mult * hidden_size, hidden_size)
310
+
311
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
312
+ hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
313
+ output = self.dense_4h_to_h(hidden_states)
314
+ return output
315
+
316
+
317
+ class CodifyBlock(nn.Module):
318
+ def __init__(self, config: CodifyConfig):
319
+ super().__init__()
320
+ hidden_size = config.hidden_size
321
+
322
+ self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
323
+ self.num_heads = config.num_attention_heads
324
+ self.self_attention = CodifyAttention(config)
325
+ self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
326
+ self.mlp = CodifyMLP(config)
327
+
328
+ def forward(
329
+ self,
330
+ hidden_states: torch.Tensor,
331
+ alibi: torch.Tensor,
332
+ attention_mask: torch.Tensor,
333
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
334
+ head_mask: Optional[torch.Tensor] = None,
335
+ use_cache: bool = False,
336
+ output_attentions: bool = False,
337
+ ):
338
+ # hidden_states: [batch_size, seq_length, hidden_size]
339
+
340
+ # Layer norm at the beginning of the transformer layer.
341
+ layernorm_output = self.input_layernorm(hidden_states)
342
+
343
+ # Self attention.
344
+ attn_outputs = self.self_attention(
345
+ layernorm_output,
346
+ layer_past=layer_past,
347
+ attention_mask=attention_mask,
348
+ alibi=alibi,
349
+ head_mask=head_mask,
350
+ use_cache=use_cache,
351
+ output_attentions=output_attentions,
352
+ )
353
+
354
+ attention_output = attn_outputs[0]
355
+ outputs = attn_outputs[1:]
356
+
357
+ attention_mix = attention_output + hidden_states
358
+ layernorm_output = self.post_attention_layernorm(attention_mix)
359
+
360
+ # MLP.
361
+ output = self.mlp(layernorm_output)
362
+ output = output + attention_output + hidden_states
363
+
364
+ if use_cache:
365
+ outputs = (output,) + outputs
366
+ else:
367
+ outputs = (output,) + outputs[1:]
368
+
369
+ return outputs # hidden_states, present, attentions
370
+
371
+ class CodifyPreTrainedModel(PreTrainedModel):
372
+ _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
373
+ """
374
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
375
+ models.
376
+ """
377
+
378
+ config_class = CodifyConfig
379
+ base_model_prefix = "transformer"
380
+ supports_gradient_checkpointing = True
381
+ _no_split_modules = ["CodifyBlock"]
382
+
383
+ def __init__(self, *inputs, **kwargs):
384
+ super().__init__(*inputs, **kwargs)
385
+
386
+ def _init_weights(self, module: nn.Module):
387
+ """Initialize the weights."""
388
+ if isinstance(module, nn.Linear):
389
+ # Slightly different from the TF version which uses truncated_normal for initialization
390
+ # cf https://github.com/pytorch/pytorch/pull/5617
391
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
392
+ if module.bias is not None:
393
+ module.bias.data.zero_()
394
+ elif isinstance(module, nn.Embedding):
395
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
396
+ if module.padding_idx is not None:
397
+ module.weight.data[module.padding_idx].zero_()
398
+ elif isinstance(module, LayerNorm):
399
+ module.bias.data.zero_()
400
+ module.weight.data.fill_(1.0)
401
+
402
+ def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
403
+ if isinstance(module, CodifyModel):
404
+ module.gradient_checkpointing = value
405
+
406
+ @staticmethod
407
+ def _convert_to_standard_cache(
408
+ past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
409
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
410
+ """
411
+ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
412
+ num_heads, ...]))
413
+ """
414
+ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
415
+ num_heads = batch_size_times_num_heads // batch_size
416
+ # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
417
+ # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
418
+ return tuple(
419
+ (
420
+ layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
421
+ layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
422
+ )
423
+ for layer_past in past_key_value
424
+ )
425
+
426
+ @staticmethod
427
+ def _convert_to_codify_cache(
428
+ past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
429
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
430
+ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
431
+ batch_size_times_num_heads = batch_size * num_heads
432
+ # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
433
+ # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
434
+ return tuple(
435
+ (
436
+ layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
437
+ layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
438
+ )
439
+ for layer_past in past_key_value
440
+ )
441
+
442
+ class CodifyModel(CodifyPreTrainedModel):
443
+ def __init__(self, config: CodifyConfig):
444
+ super().__init__(config)
445
+
446
+ self.embed_dim = config.hidden_size
447
+ self.num_heads = config.num_attention_heads
448
+
449
+ # Embedding
450
+ self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
451
+
452
+ # Transformer blocks
453
+ self.h = nn.ModuleList([CodifyBlock(config) for _ in range(config.num_hidden_layers)])
454
+
455
+ # Final Layer Norm
456
+ self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
457
+
458
+ self.gradient_checkpointing = False
459
+
460
+ # Initialize weights and apply final processing
461
+ self.post_init()
462
+
463
+ def get_input_embeddings(self):
464
+ return self.word_embeddings
465
+
466
+ def _prepare_attn_mask(
467
+ self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
468
+ ) -> torch.BoolTensor:
469
+ # create causal mask
470
+ # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
471
+ combined_attention_mask = None
472
+ device = attention_mask.device
473
+ _, src_length = input_shape
474
+
475
+ if src_length > 1:
476
+ combined_attention_mask = _make_causal_mask(
477
+ input_shape, device=device, past_key_values_length=past_key_values_length
478
+ )
479
+
480
+ # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
481
+ expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
482
+ combined_attention_mask = (
483
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
484
+ )
485
+
486
+ return combined_attention_mask
487
+
488
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
489
+ self.word_embeddings = new_embeddings
490
+
491
+ @add_code_sample_docstrings(
492
+ processor_class=_TOKENIZER_FOR_DOC,
493
+ checkpoint=_CHECKPOINT_FOR_DOC,
494
+ output_type=BaseModelOutputWithPast,
495
+ config_class=_CONFIG_FOR_DOC,
496
+ )
497
+ def forward(
498
+ self,
499
+ input_ids: Optional[torch.LongTensor] = None,
500
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
501
+ attention_mask: Optional[torch.Tensor] = None,
502
+ head_mask: Optional[torch.LongTensor] = None,
503
+ inputs_embeds: Optional[torch.LongTensor] = None,
504
+ use_cache: Optional[bool] = None,
505
+ output_attentions: Optional[bool] = None,
506
+ output_hidden_states: Optional[bool] = None,
507
+ return_dict: Optional[bool] = None,
508
+ **deprecated_arguments
509
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
510
+ if deprecated_arguments.pop("position_ids", False) is not False:
511
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
512
+ warnings.warn(
513
+ "`position_ids` have no functionality in Codify and will be removed in v5.0.0. You can safely ignore"
514
+ " passing `position_ids`.",
515
+ FutureWarning,
516
+ )
517
+ if len(deprecated_arguments) > 0:
518
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
519
+
520
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
521
+ output_hidden_states = (
522
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
523
+ )
524
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
525
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
526
+
527
+ if input_ids is not None and inputs_embeds is not None:
528
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
529
+ elif input_ids is not None:
530
+ batch_size, seq_length = input_ids.shape
531
+ elif inputs_embeds is not None:
532
+ batch_size, seq_length, _ = inputs_embeds.shape
533
+ else:
534
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
535
+
536
+ if past_key_values is None:
537
+ past_key_values = tuple([None] * len(self.h))
538
+
539
+ # Prepare head mask if needed
540
+ # 1.0 in head_mask indicate we keep the head
541
+ # attention_probs has shape batch_size x num_heads x N x N
542
+ # head_mask has shape n_layer x batch x num_heads x N x N
543
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
544
+
545
+ if inputs_embeds is None:
546
+ inputs_embeds = self.word_embeddings(input_ids)
547
+
548
+ hidden_states = inputs_embeds
549
+
550
+ presents = () if use_cache else None
551
+ all_self_attentions = () if output_attentions else None
552
+ all_hidden_states = () if output_hidden_states else None
553
+
554
+ # Compute alibi tensor: check build_alibi_tensor documentation
555
+ seq_length_with_past = seq_length
556
+ past_key_values_length = 0
557
+ if past_key_values[0] is not None:
558
+ past_key_values_length = past_key_values[0][0].shape[2]
559
+ seq_length_with_past = seq_length_with_past + past_key_values_length
560
+ if attention_mask is None:
561
+ attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
562
+ else:
563
+ attention_mask = attention_mask.to(hidden_states.device)
564
+
565
+ alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
566
+
567
+ causal_mask = self._prepare_attn_mask(
568
+ attention_mask,
569
+ input_shape=(batch_size, seq_length),
570
+ past_key_values_length=past_key_values_length,
571
+ )
572
+
573
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
574
+
575
+ if output_hidden_states:
576
+ all_hidden_states = all_hidden_states + (hidden_states,)
577
+
578
+ if self.gradient_checkpointing and self.training:
579
+
580
+ if use_cache:
581
+ logger.warning(
582
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
583
+ )
584
+ use_cache = False
585
+
586
+ def create_custom_forward(module):
587
+ def custom_forward(*inputs):
588
+ # None for past_key_value
589
+ return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
590
+
591
+ return custom_forward
592
+
593
+ outputs = torch.utils.checkpoint.checkpoint(
594
+ create_custom_forward(block),
595
+ hidden_states,
596
+ alibi,
597
+ causal_mask,
598
+ head_mask[i],
599
+ )
600
+ else:
601
+ outputs = block(
602
+ hidden_states,
603
+ layer_past=layer_past,
604
+ attention_mask=causal_mask,
605
+ head_mask=head_mask[i],
606
+ use_cache=use_cache,
607
+ output_attentions=output_attentions,
608
+ alibi=alibi,
609
+ )
610
+
611
+ hidden_states = outputs[0]
612
+ if use_cache is True:
613
+ presents = presents + (outputs[1],)
614
+
615
+ if output_attentions:
616
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
617
+
618
+ # Add last hidden state
619
+ hidden_states = self.ln_f(hidden_states)
620
+
621
+ if output_hidden_states:
622
+ all_hidden_states = all_hidden_states + (hidden_states,)
623
+
624
+ if not return_dict:
625
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
626
+
627
+ return BaseModelOutputWithPast(
628
+ last_hidden_state=hidden_states,
629
+ past_key_values=presents,
630
+ hidden_states=all_hidden_states,
631
+ attentions=all_self_attentions,
632
+ )
633
+
634
+
635
+ class CodifyForCausalLM(CodifyPreTrainedModel):
636
+ _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
637
+
638
+ def __init__(self, config: CodifyConfig):
639
+ super().__init__(config)
640
+ self.transformer = CodifyModel(config)
641
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
642
+
643
+ # Initialize weights and apply final processing
644
+ self.post_init()
645
+
646
+ def get_output_embeddings(self):
647
+ return self.lm_head
648
+
649
+ def set_output_embeddings(self, new_embeddings: torch.Tensor):
650
+ self.lm_head = new_embeddings
651
+
652
+ def prepare_inputs_for_generation(
653
+ self,
654
+ input_ids: torch.LongTensor,
655
+ past: Optional[torch.Tensor] = None,
656
+ attention_mask: Optional[torch.Tensor] = None,
657
+ **kwargs
658
+ ) -> dict:
659
+ # only last token for input_ids if past is not None
660
+ if past:
661
+ input_ids = input_ids[:, -1].unsqueeze(-1)
662
+
663
+ if past[0][0].shape[0] == input_ids.shape[0]:
664
+ past = self._convert_to_codify_cache(past)
665
+
666
+ return {
667
+ "input_ids": input_ids,
668
+ "past_key_values": past,
669
+ "use_cache": kwargs.get("use_cache"),
670
+ "attention_mask": attention_mask,
671
+ }
672
+
673
+ @add_code_sample_docstrings(
674
+ processor_class=_TOKENIZER_FOR_DOC,
675
+ checkpoint=_CHECKPOINT_FOR_DOC,
676
+ output_type=CausalLMOutputWithPast,
677
+ config_class=_CONFIG_FOR_DOC,
678
+ )
679
+ def forward(
680
+ self,
681
+ input_ids: Optional[torch.LongTensor] = None,
682
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
683
+ attention_mask: Optional[torch.Tensor] = None,
684
+ head_mask: Optional[torch.Tensor] = None,
685
+ inputs_embeds: Optional[torch.Tensor] = None,
686
+ labels: Optional[torch.Tensor] = None,
687
+ use_cache: Optional[bool] = None,
688
+ output_attentions: Optional[bool] = None,
689
+ output_hidden_states: Optional[bool] = None,
690
+ return_dict: Optional[bool] = None,
691
+ **deprecated_arguments
692
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
693
+ r"""
694
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
695
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
696
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
697
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
698
+ """
699
+ if deprecated_arguments.pop("position_ids", False) is not False:
700
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
701
+ warnings.warn(
702
+ "`position_ids` have no functionality in Codify and will be removed in v5.0.0. You can safely ignore"
703
+ " passing `position_ids`.",
704
+ FutureWarning,
705
+ )
706
+ if len(deprecated_arguments) > 0:
707
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
708
+
709
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
710
+
711
+ transformer_outputs = self.transformer(
712
+ input_ids,
713
+ past_key_values=past_key_values,
714
+ attention_mask=attention_mask,
715
+ head_mask=head_mask,
716
+ inputs_embeds=inputs_embeds,
717
+ use_cache=use_cache,
718
+ output_attentions=output_attentions,
719
+ output_hidden_states=output_hidden_states,
720
+ return_dict=return_dict,
721
+ )
722
+ hidden_states = transformer_outputs[0]
723
+
724
+ lm_logits = self.lm_head(hidden_states / 2.0)
725
+
726
+ loss = None
727
+ if labels is not None:
728
+ # Shift so that tokens < n predict n
729
+ shift_logits = lm_logits[..., :-1, :].contiguous()
730
+ shift_labels = labels[..., 1:].contiguous()
731
+ batch_size, seq_length, vocab_size = shift_logits.shape
732
+ # Flatten the tokens
733
+ loss_fct = CrossEntropyLoss()
734
+ loss = loss_fct(
735
+ shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
736
+ )
737
+
738
+ if not return_dict:
739
+ output = (lm_logits,) + transformer_outputs[1:]
740
+ return ((loss,) + output) if loss is not None else output
741
+
742
+ return CausalLMOutputWithPast(
743
+ loss=loss,
744
+ logits=lm_logits,
745
+ past_key_values=transformer_outputs.past_key_values,
746
+ hidden_states=transformer_outputs.hidden_states,
747
+ attentions=transformer_outputs.attentions,
748
+ )
749
+
750
+ def _reorder_cache(
751
+ self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
752
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
753
+ """
754
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
755
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
756
+ beam_idx at every generation step.
757
+
758
+ Output shares the same memory storage as `past`.
759
+ """
760
+ standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
761
+
762
+ # Get a copy of `beam_idx` on all the devices where we need those indices.
763
+ device_to_beam_idx = {
764
+ past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
765
+ }
766
+ reordered_past = tuple(
767
+ (
768
+ layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
769
+ layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
770
+ )
771
+ for layer_past in standardized_past
772
+ )
773
+ return self._convert_to_codify_cache(reordered_past)
codify/tokenization_codify_fast.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from typing import TYPE_CHECKING, List, Optional, Tuple
3
+
4
+ from tokenizers import pre_tokenizers
5
+
6
+ from transformers.tokenization_utils_base import BatchEncoding
7
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
8
+ from transformers.utils import logging
9
+
10
+
11
+ if TYPE_CHECKING:
12
+ from transformers.pipelines.conversational import Conversation
13
+
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+ VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
18
+
19
+ PRETRAINED_VOCAB_FILES_MAP = {
20
+ "tokenizer_file": {
21
+ "smallcloudai/codify_medium_multi": "https://huggingface.co/smallcloudai/codify_medium_multi/blob/main/tokenizer.json",
22
+ "smallcloudai/codify_3b_multi": "https://huggingface.co/smallcloudai/codify_3b_multi/blob/main/tokenizer.json",
23
+ },
24
+ }
25
+
26
+
27
+ class CodifyTokenizerFast(PreTrainedTokenizerFast):
28
+ vocab_files_names = VOCAB_FILES_NAMES
29
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
30
+ model_input_names = ["input_ids", "attention_mask"]
31
+ slow_tokenizer_class = None
32
+
33
+ def __init__(
34
+ self,
35
+ vocab_file=None,
36
+ merges_file=None,
37
+ tokenizer_file=None,
38
+ unk_token="<|endoftext|>",
39
+ bos_token="<|endoftext|>",
40
+ eos_token="<|endoftext|>",
41
+ add_prefix_space=False,
42
+ **kwargs
43
+ ):
44
+ super().__init__(
45
+ vocab_file,
46
+ merges_file,
47
+ tokenizer_file=tokenizer_file,
48
+ unk_token=unk_token,
49
+ bos_token=bos_token,
50
+ eos_token=eos_token,
51
+ add_prefix_space=add_prefix_space,
52
+ **kwargs,
53
+ )
54
+ pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
55
+ if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
56
+ pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
57
+ pre_tok_state["add_prefix_space"] = add_prefix_space
58
+ self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
59
+
60
+ self.add_prefix_space = add_prefix_space
61
+
62
+ def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
63
+ is_split_into_words = kwargs.get("is_split_into_words", False)
64
+ if not (self.add_prefix_space or not is_split_into_words):
65
+ raise Exception(
66
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
67
+ " pretokenized inputs."
68
+ )
69
+
70
+ return super()._batch_encode_plus(*args, **kwargs)
71
+
72
+ def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
73
+ is_split_into_words = kwargs.get("is_split_into_words", False)
74
+
75
+ if not (self.add_prefix_space or not is_split_into_words):
76
+ raise Exception(
77
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
78
+ " pretokenized inputs."
79
+ )
80
+
81
+ return super()._encode_plus(*args, **kwargs)
82
+
83
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
84
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
85
+ return tuple(files)
86
+
87
+ def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
88
+ """This corresponds to DialoGPT variants of models."""
89
+ input_ids = []
90
+ for is_user, text in conversation.iter_texts():
91
+ input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
92
+
93
+ if len(input_ids) > self.model_max_length:
94
+ input_ids = input_ids[-self.model_max_length :]
95
+ return input_ids