File size: 32,610 Bytes
6146892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
import math
import warnings
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, LayerNorm
from torch.nn import functional as F
from transformers.file_utils import add_code_sample_docstrings, add_start_docstrings, \
    add_start_docstrings_to_model_forward
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration_codify import CodifyConfig

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "smallcloudai/codify_medium_multi"
_CONFIG_FOR_DOC = "CodifyConfig"
_TOKENIZER_FOR_DOC = "CodifyTokenizerFast"


CODIFY_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "smallcloudai/codify_medium_multi",
    "smallcloudai/codify_3b_multi"
]

def _make_causal_mask(
    input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
    """
    Make causal mask used for self-attention.
    """
    batch_size, target_length = input_ids_shape
    mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
    # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
    seq_ids = torch.arange(target_length, device=device)
    mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]

    if past_key_values_length > 0:
        mask[:, :past_key_values_length] = False

    expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
    return expanded_mask


def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
    """
    Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
    """
    batch_size, src_length = mask.shape
    tgt_length = tgt_length if tgt_length is not None else src_length

    expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
    return expanded_mask.expand(batch_size, 1, tgt_length, src_length)


def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
    """
    Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
    relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
    `softmax(l+a) = softmax(l)`. Based on
    https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
    TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.

    Args:
    Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
        attention_mask (`torch.Tensor`):
            Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
        num_heads (`int`, *required*):
            number of heads
        dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
            dtype of the output tensor
    """
    batch_size, seq_length = attention_mask.shape
    closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
    base = torch.tensor(
        2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
    )
    powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
    slopes = torch.pow(base, powers)

    if closest_power_of_2 != num_heads:
        extra_base = torch.tensor(
            2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
        )
        num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
        extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
        slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)

    # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
    # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
    # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
    # => the query_length dimension will then be broadcasted correctly
    # This is more or less identical to T5's relative position bias:
    # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
    arange_tensor = ((attention_mask.cumsum(dim=-1)) * attention_mask)[:, None, :]
    alibi = slopes[..., None] * arange_tensor
    return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)



def codify_gelu_forward(x: torch.Tensor) -> torch.Tensor:
    """
    Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
    make the model jitable.

    Args:
        x (`torch.tensor`, *required*):
            input hidden states
    """
    return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))


def codify_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
    """
    gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
    0.3989423 * x * torch.exp(-0.5 * x * x)

    Args:
        g (`torch.tensor`, *required*):
            gradient output tensor
        x (`torch.tensor`, *required*):
            input tensor
    """
    x = x[0]  # x is a tuple of 1 element, needs to unpack it first
    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
    ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
    return ff * g


class GeLUFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input: torch.Tensor) -> torch.Tensor:
        ctx.save_for_backward(input)
        return codify_gelu_forward(input)

    @staticmethod
    def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
        input = ctx.saved_tensors
        tmp = codify_gelu_back(grad_output, input)
        return tmp


class CodifyGelu(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.training:
            return GeLUFunction.apply(x)
        else:
            return codify_gelu_forward(x)


class CodifyAttention(nn.Module):
    def __init__(self, config: CodifyConfig):
        super().__init__()

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.split_size = self.hidden_size

        if self.head_dim * self.num_heads != self.hidden_size:
            raise ValueError(
                f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
                f" {self.num_heads})."
            )

        # Layer-wise attention scaling
        # 8.0 = self.head_dim
        self.inv_norm_factor = 8.0 / self.head_dim
        self.beta = 1.0

        self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
        self.dense = nn.Linear(self.hidden_size, self.hidden_size)

    def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
        storage as `fused_qkv`

        Args:
            fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]

        Returns:
            query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
            value: [batch_size, seq_length, num_heads, head_dim]
        """
        batch_size, seq_length, _ = fused_qkv.shape
        q, k, v = fused_qkv.chunk(3, dim=-1)
        return q.view(batch_size, seq_length, self.num_heads, self.head_dim),\
            k.view(batch_size, seq_length, self.num_heads, self.head_dim),\
            v.view(batch_size, seq_length, self.num_heads, self.head_dim)

    def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
        """
        Merge heads together over the last dimenstion

        Args:
            x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]

        Returns:
            torch.tensor: [batch_size, seq_length, num_heads * head_dim]
        """
        # What we want to achieve is:
        # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
        batch_size_and_num_heads, seq_length, _ = x.shape
        batch_size = batch_size_and_num_heads // self.num_heads

        # First view to decompose the batch size
        # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
        x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)

        # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
        x = x.permute(0, 2, 1, 3)

        # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
        return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        alibi: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
    ):
        fused_qkv = self.query_key_value(hidden_states)  # [batch_size, seq_length, 3 x hidden_size]

        # 3 x [batch_size, seq_length, num_heads, head_dim]
        (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)

        batch_size, q_length, _, _ = query_layer.shape

        query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
        key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
        value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
        if layer_past is not None:
            past_key, past_value = layer_past
            # concatenate along seq_length dimension:
            #  - key: [batch_size * self.num_heads, head_dim, kv_length]
            #  - value: [batch_size * self.num_heads, kv_length, head_dim]
            key_layer = torch.cat((past_key, key_layer), dim=2)
            value_layer = torch.cat((past_value, value_layer), dim=1)

        _, _, kv_length = key_layer.shape

        if use_cache is True:
            present = (key_layer, value_layer)
        else:
            present = None

        # [batch_size * num_heads, q_length, kv_length]
        # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
        matmul_result = alibi.baddbmm(
            batch1=query_layer,
            batch2=key_layer,
            beta=self.beta,
            alpha=self.inv_norm_factor,
        )

        # change view to [batch_size, num_heads, q_length, kv_length]
        attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)

        # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
        input_dtype = attention_scores.dtype
        # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
        if input_dtype == torch.float16:
            attention_scores = attention_scores.to(torch.float)
        attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
        attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)

        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        # change view [batch_size x num_heads, q_length, kv_length]
        attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)

        # matmul: [batch_size * num_heads, q_length, head_dim]
        context_layer = torch.bmm(attention_probs_reshaped, value_layer)

        # change view [batch_size, num_heads, q_length, head_dim]
        context_layer = self._merge_heads(context_layer)

        output_tensor = self.dense(context_layer)
        outputs = (output_tensor, present)
        if output_attentions:
            outputs += (attention_probs,)

        return outputs


class CodifyMLP(nn.Module):
    def __init__(self, config: CodifyConfig):
        super().__init__()
        hidden_size = config.hidden_size
        self.dense_h_to_4h = nn.Linear(hidden_size, config.mlp_mult * hidden_size)
        self.gelu_impl = CodifyGelu()
        self.dense_4h_to_h = nn.Linear(config.mlp_mult * hidden_size, hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
        output = self.dense_4h_to_h(hidden_states)
        return output


class CodifyBlock(nn.Module):
    def __init__(self, config: CodifyConfig):
        super().__init__()
        hidden_size = config.hidden_size

        self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.num_heads = config.num_attention_heads
        self.self_attention = CodifyAttention(config)
        self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.mlp = CodifyMLP(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        alibi: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
    ):
        # hidden_states: [batch_size, seq_length, hidden_size]

        # Layer norm at the beginning of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)

        # Self attention.
        attn_outputs = self.self_attention(
            layernorm_output,
            layer_past=layer_past,
            attention_mask=attention_mask,
            alibi=alibi,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )

        attention_output = attn_outputs[0]
        outputs = attn_outputs[1:]

        attention_mix = attention_output + hidden_states
        layernorm_output = self.post_attention_layernorm(attention_mix)

        # MLP.
        output = self.mlp(layernorm_output)
        output = output + attention_output + hidden_states

        if use_cache:
            outputs = (output,) + outputs
        else:
            outputs = (output,) + outputs[1:]

        return outputs  # hidden_states, present, attentions

class CodifyPreTrainedModel(PreTrainedModel):
    _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CodifyConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["CodifyBlock"]

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module: nn.Module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
        if isinstance(module, CodifyModel):
            module.gradient_checkpointing = value

    @staticmethod
    def _convert_to_standard_cache(
        past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
        """
        Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
        num_heads, ...]))
        """
        batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
        num_heads = batch_size_times_num_heads // batch_size
        # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
        # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
        return tuple(
            (
                layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
                layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
            )
            for layer_past in past_key_value
        )

    @staticmethod
    def _convert_to_codify_cache(
        past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
        batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
        batch_size_times_num_heads = batch_size * num_heads
        # key:  [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
        # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
        return tuple(
            (
                layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
                layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
            )
            for layer_past in past_key_value
        )

class CodifyModel(CodifyPreTrainedModel):
    def __init__(self, config: CodifyConfig):
        super().__init__(config)

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads

        # Embedding
        self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)

        # Transformer blocks
        self.h = nn.ModuleList([CodifyBlock(config) for _ in range(config.num_hidden_layers)])

        # Final Layer Norm
        self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.word_embeddings

    def _prepare_attn_mask(
        self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
    ) -> torch.BoolTensor:
        # create causal mask
        # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
        combined_attention_mask = None
        device = attention_mask.device
        _, src_length = input_shape

        if src_length > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape, device=device, past_key_values_length=past_key_values_length
            )

        # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
        expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
        combined_attention_mask = (
            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
        )

        return combined_attention_mask

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.word_embeddings = new_embeddings

    @add_code_sample_docstrings(
        processor_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **deprecated_arguments
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in Codify and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.h))

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape batch_size x num_heads x N x N
        # head_mask has shape n_layer x batch x num_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        hidden_states = inputs_embeds

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        # Compute alibi tensor: check build_alibi_tensor documentation
        seq_length_with_past = seq_length
        past_key_values_length = 0
        if past_key_values[0] is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length
        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
        else:
            attention_mask = attention_mask.to(hidden_states.device)

        alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)

        causal_mask = self._prepare_attn_mask(
            attention_mask,
            input_shape=(batch_size, seq_length),
            past_key_values_length=past_key_values_length,
        )

        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    alibi,
                    causal_mask,
                    head_mask[i],
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=causal_mask,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    alibi=alibi,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

        # Add last hidden state
        hidden_states = self.ln_f(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


class CodifyForCausalLM(CodifyPreTrainedModel):
    _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]

    def __init__(self, config: CodifyConfig):
        super().__init__(config)
        self.transformer = CodifyModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: torch.Tensor):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor,
        past: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs
    ) -> dict:
        # only last token for input_ids if past is not None
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)

            if past[0][0].shape[0] == input_ids.shape[0]:
                past = self._convert_to_codify_cache(past)

        return {
            "input_ids": input_ids,
            "past_key_values": past,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
        }

    @add_code_sample_docstrings(
        processor_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **deprecated_arguments
    ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in Codify and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states / 2.0)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            batch_size, seq_length, vocab_size = shift_logits.shape
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
            )

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    def _reorder_cache(
        self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.

        Output shares the same memory storage as `past`.
        """
        standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))

        # Get a copy of `beam_idx` on all the devices where we need those indices.
        device_to_beam_idx = {
            past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
        }
        reordered_past = tuple(
            (
                layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
                layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
            )
            for layer_past in standardized_past
        )
        return self._convert_to_codify_cache(reordered_past)