File size: 5,451 Bytes
2f812a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional

from packaging import version

from transformers import is_torch_available

if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer, TensorType

from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
from transformers.utils import logging

logger = logging.get_logger(__name__)

CODIFY_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "smallcloudai/codify_medium_multi": "https://huggingface.co/smallcloudai/codify_medium_multi/blob/main/config.json",
    "smallcloudai/codify_3b_multi": "https://huggingface.co/smallcloudai/codify_3b_multi/blob/main/config.json",
}


class CodifyConfig(PretrainedConfig):
    model_type = "codify"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {
        "num_hidden_layers": "L",
        "num_attention_heads": "attn_heads",
        "hidden_size": "E",
    }

    def __init__(
            self,
            vocab_size=51305,
            layer_norm_epsilon=1e-5,
            initializer_range=0.02,
            use_cache=True,
            bos_token_id=1,
            eos_token_id=2,
            mlp_mult=4,
            tie_word_embeddings=False,
            **kwargs,
    ):
        self.vocab_size = vocab_size
        self.mlp_mult = mlp_mult
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.use_cache = use_cache

        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id

        super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id,
                         tie_word_embeddings=tie_word_embeddings, **kwargs)


class CodifyOnnxConfig(OnnxConfigWithPast):
    torch_onnx_minimum_version = version.parse("1.12")

    def __init__(
            self,
            config: PretrainedConfig,
            task: str = "default",
            patching_specs: List[PatchingSpec] = None,
            use_past: bool = False,
    ):
        super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
        if not getattr(self._config, "pad_token_id", None):
            # TODO: how to do that better?
            self._config.pad_token_id = 0

    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
        if self.use_past:
            # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
            self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True)
            common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
        else:
            common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}

        return common_inputs

    @property
    def num_layers(self) -> int:
        return self._config.num_hidden_layers

    @property
    def num_attention_heads(self) -> int:
        return self._config.n_head

    @property
    def atol_for_validation(self) -> float:
        return 1e-3

    def generate_dummy_inputs(
            self,
            tokenizer: "PreTrainedTokenizer",
            batch_size: int = -1,
            seq_length: int = -1,
            is_pair: bool = False,
            framework: Optional["TensorType"] = None,
    ) -> Mapping[str, Any]:
        common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
            tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
        )

        # We need to order the input in the way they appears in the forward()
        ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})

        # Need to add the past_keys
        if self.use_past:
            if not is_torch_available():
                raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
            else:
                import torch

                batch, seqlen = common_inputs["input_ids"].shape
                # Not using the same length for past_key_values
                past_key_values_length = seqlen + 2
                head_dim = self._config.hidden_size // self.num_attention_heads
                past_key_shape = (
                    batch * self.num_attention_heads,
                    head_dim,
                    past_key_values_length,
                )
                past_value_shape = (
                    batch * self.num_attention_heads,
                    past_key_values_length,
                    head_dim,
                )
                ordered_inputs["past_key_values"] = [
                    (torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers)
                ]

        ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
        if self.use_past:
            mask_dtype = ordered_inputs["attention_mask"].dtype
            ordered_inputs["attention_mask"] = torch.cat(
                [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
            )

        return ordered_inputs

    @property
    def default_onnx_opset(self) -> int:
        return 13


from transformers import AutoConfig

AutoConfig.register(CodifyConfig.model_type, CodifyConfig)