File size: 2,863 Bytes
c6e7e93 bbf557f c6e7e93 0c3cfa2 c6e7e93 bbf557f c6e7e93 0c3cfa2 c6e7e93 0c3cfa2 c6e7e93 bbf557f c6e7e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: bigcode-openrail-m
base_model: bigcode/starcoder
tags:
- generated_from_trainer
model-index:
- name: peft-lora-starcoder15B-v2-personal-copilot-A100-40GB-colab
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-lora-starcoder15B-v2-personal-copilot-A100-40GB-colab
This model is a fine-tuned version of [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3096
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6439 | 0.05 | 100 | 0.5595 |
| 0.6009 | 0.1 | 200 | 0.4901 |
| 0.6335 | 0.15 | 300 | 0.4320 |
| 0.5266 | 0.2 | 400 | 0.4082 |
| 0.4543 | 0.25 | 500 | 0.4012 |
| 0.4808 | 0.3 | 600 | 0.3911 |
| 0.461 | 0.35 | 700 | 0.4364 |
| 0.5246 | 0.4 | 800 | 0.3720 |
| 0.408 | 0.45 | 900 | 0.3655 |
| 0.469 | 0.5 | 1000 | 0.3504 |
| 0.4257 | 0.55 | 1100 | 0.3396 |
| 0.4229 | 0.6 | 1200 | 0.3195 |
| 0.3267 | 0.65 | 1300 | 0.3147 |
| 0.4682 | 0.7 | 1400 | 0.3110 |
| 0.3244 | 0.75 | 1500 | 0.3091 |
| 0.6782 | 0.8 | 1600 | 0.3085 |
| 0.3123 | 0.85 | 1700 | 0.3084 |
| 0.3545 | 0.9 | 1800 | 0.3094 |
| 0.2818 | 0.95 | 1900 | 0.3095 |
| 0.397 | 1.0 | 2000 | 0.3096 |
### Framework versions
- PEFT 0.5.0.dev0
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|