File size: 1,930 Bytes
747b623
bc7082b
 
 
 
 
 
1974cdd
747b623
bc7082b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747b623
 
1974cdd
 
 
 
 
 
 
 
 
 
 
bc7082b
747b623
bc7082b
 
 
 
 
 
 
 
 
 
 
 
 
747b623
bc7082b
 
 
 
 
 
 
 
747b623
1974cdd
bc7082b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: bigcode/starcoderplus
tags:
- generated_from_trainer
model-index:
- name: peft-lora-starcoderplus-chat-asst-A100-40GB-colab
  results: []
library_name: peft
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# peft-lora-starcoderplus-chat-asst-A100-40GB-colab

This model is a fine-tuned version of [bigcode/starcoderplus](https://huggingface.co/bigcode/starcoderplus) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9217

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure


The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.982         | 0.3   | 203  | 0.9101          |
| 0.9379        | 1.3   | 406  | 0.9078          |
| 0.8899        | 2.3   | 609  | 0.9217          |


### Framework versions

- PEFT 0.5.0.dev0
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3